CpG Methylation, a Parent-of-Origin Effect for Maternal-Biased Transmission of Congenital Myotonic Dystrophy

. 2017 Mar 02 ; 100 (3) : 488-505.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28257691
Odkazy

PubMed 28257691
PubMed Central PMC5339342
DOI 10.1016/j.ajhg.2017.01.033
PII: S0002-9297(17)30066-6
Knihovny.cz E-zdroje

CTG repeat expansions in DMPK cause myotonic dystrophy (DM1) with a continuum of severity and ages of onset. Congenital DM1 (CDM1), the most severe form, presents distinct clinical features, large expansions, and almost exclusive maternal transmission. The correlation between CDM1 and expansion size is not absolute, suggesting contributions of other factors. We determined CpG methylation flanking the CTG repeat in 79 blood samples from 20 CDM1-affected individuals; 21, 27, and 11 individuals with DM1 but not CDM1 (henceforth non-CDM1) with maternal, paternal, and unknown inheritance; and collections of maternally and paternally derived chorionic villus samples (7 CVSs) and human embryonic stem cells (4 hESCs). All but two CDM1-affected individuals showed high levels of methylation upstream and downstream of the repeat, greater than non-CDM1 individuals (p = 7.04958 × 10-12). Most non-CDM1 individuals were devoid of methylation, where one in six showed downstream methylation. Only two non-CDM1 individuals showed upstream methylation, and these were maternally derived childhood onset, suggesting a continuum of methylation with age of onset. Only maternally derived hESCs and CVSs showed upstream methylation. In contrast, paternally derived samples (27 blood samples, 3 CVSs, and 2 hESCs) never showed upstream methylation. CTG tract length did not strictly correlate with CDM1 or methylation. Thus, methylation patterns flanking the CTG repeat are stronger indicators of CDM1 than repeat size. Spermatogonia with upstream methylation may not survive due to methylation-induced reduced expression of the adjacent SIX5, thereby protecting DM1-affected fathers from having CDM1-affected children. Thus, DMPK methylation may account for the maternal bias for CDM1 transmission, larger maternal CTG expansions, age of onset, and clinical continuum, and may serve as a diagnostic indicator.

Centre for Medical Genetics Universitair Ziekenhuis Brussel Brussels 1090 Belgium

Department for Reproduction and Genetics Vrije Universiteit Brussel Brussels 1090 Belgium

Department of Biology and Medical Genetics Charles University Prague Prague 128 00 Czech Republic

Department of Pathology and Laboratory Medicine Mount Sinai Hospital University of Toronto Toronto ON M5G 1X5 Canada

Genetics and Genome Biology The Hospital for Sick Children Toronto ON M5G 0A4 Canada

Genetics and Genome Biology The Hospital for Sick Children Toronto ON M5G 0A4 Canada; The Department of Molecular Genetics University of Toronto Toronto ON M5S 1A8 Canada

Genetics and Genome Biology The Hospital for Sick Children Toronto ON M5G 0A4 Canada; The Department of Molecular Genetics University of Toronto Toronto ON M5S 1A8 Canada; Division of Clinical and Metabolic Genetics The Hospital for Sick Children Toronto ON M5G 1X8 Canada; Institute of Medical Science School of Graduate Studies University of Toronto Toronto ON M5S 1A8 Canada; Department of Pediatrics University of Toronto Toronto ON M5S 1A1 Canada

Groupe de Recherche Interdisciplinaire sur les Maladies Neuromusculaires Saguenay QC 75204 Canada

The Prenatal Diagnosis and Medical Genetics Program Department of Obstetrics and Gynecology University of Toronto Toronto ON M5G 1E2 Canada

The Prenatal Diagnosis and Medical Genetics Program Department of Obstetrics and Gynecology University of Toronto Toronto ON M5G 1E2 Canada; Division of Clinical and Metabolic Genetics The Hospital for Sick Children Toronto ON M5G 1X8 Canada

Zobrazit více v PubMed

Schmidt M.H., Pearson C.E. Disease-associated repeat instability and mismatch repair. DNA Repair (Amst.) 2016;38:117–126. PubMed

Ashizawa T., Dunne C.J., Dubel J.R., Perryman M.B., Epstein H.F., Boerwinkle E., Hejtmancik J.F. Anticipation in myotonic dystrophy. I. Statistical verification based on clinical and haplotype findings. Neurology. 1992;42:1871–1877. PubMed

Ashizawa T., Dubel J.R., Dunne P.W., Dunne C.J., Fu Y.H., Pizzuti A., Caskey C.T., Boerwinkle E., Perryman M.B., Epstein H.F. Anticipation in myotonic dystrophy. II. Complex relationships between clinical findings and structure of the GCT repeat. Neurology. 1992;42:1877–1883. PubMed

Echenne B., Bassez G. Congenital and infantile myotonic dystrophy. Handb. Clin. Neurol. 2013;113:1387–1393. PubMed

Ekström A.B., Hakenäs-Plate L., Samuelsson L., Tulinius M., Wentz E. Autism spectrum conditions in myotonic dystrophy type 1: a study on 57 individuals with congenital and childhood forms. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 2008;147B:918–926. PubMed

Turner C., Hilton-Jones D. The myotonic dystrophies: diagnosis and management. J. Neurol. Neurosurg. Psychiatry. 2010;81:358–367. PubMed

Aslanidis C., Jansen G., Amemiya C., Shutler G., Mahadevan M., Tsilfidis C., Chen C., Alleman J., Wormskamp N.G., Vooijs M. Cloning of the essential myotonic dystrophy region and mapping of the putative defect. Nature. 1992;355:548–551. PubMed

Brook J.D., McCurrach M.E., Harley H.G., Buckler A.J., Church D., Aburatani H., Hunter K., Stanton V.P., Thirion J.P., Hudson T. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell. 1992;69:385. PubMed

Salehi L.B., Bonifazi E., Stasio E.D., Gennarelli M., Botta A., Vallo L., Iraci R., Massa R., Antonini G., Angelini C., Novelli G. Risk prediction for clinical phenotype in myotonic dystrophy type 1: data from 2,650 patients. Genet. Test. 2007;11:84–90. PubMed

Tsilfidis C., MacKenzie A.E., Mettler G., Barceló J., Korneluk R.G. Correlation between CTG trinucleotide repeat length and frequency of severe congenital myotonic dystrophy. Nat. Genet. 1992;1:192–195. PubMed

Myring J., Meredith A.L., Harley H.G., Kohn G., Norbury G., Harper P.S., Shaw D.J. Specific molecular prenatal diagnosis for the CTG mutation in myotonic dystrophy. J. Med. Genet. 1992;29:785–788. PubMed PMC

Di Costanzo A., de Cristofaro M., Di Iorio G., Daniele A., Bonavita S., Tedeschi G. Paternally inherited case of congenital DM1: brain MRI and review of literature. Brain Dev. 2009;31:79–82. PubMed

Zeesman S., Carson N., Whelan D.T. Paternal transmission of the congenital form of myotonic dystrophy type 1: a new case and review of the literature. Am. J. Med. Genet. 2002;107:222–226. PubMed

de Die-Smulders C.E., Smeets H.J., Loots W., Anten H.B., Mirandolle J.F., Geraedts J.P., Höweler C.J. Paternal transmission of congenital myotonic dystrophy. J. Med. Genet. 1997;34:930–933. PubMed PMC

Tanaka Y., Suzuki Y., Shimozawa N., Nanba E., Kondo N. Congenital myotonic dystrophy: report of paternal transmission. Brain Dev. 2000;22:132–134. PubMed

Ohya K., Tachi N., Chiba S., Sato T., Kon S., Kikuchi K., Imamura S., Yamagata H., Miki T. Congenital myotonic dystrophy transmitted from an asymptomatic father with a DM-specific gene. Neurology. 1994;44:1958–1960. PubMed

Bergoffen J., Kant J., Sladky J., McDonald-McGinn D., Zackai E.H., Fischbeck K.H. Paternal transmission of congenital myotonic dystrophy. J. Med. Genet. 1994;31:518–520. PubMed PMC

Cobo A.M., Baiget M., López de Munain A., Poza J.J., Emparanza J.I., Johnson K. Sex-related difference in intergenerational expansion of myotonic dystrophy gene. Lancet. 1993;341:1159–1160. PubMed

Clark C., Petty R.K., Strong A.M. Late presentation of myotonic dystrophy. Clin. Exp. Dermatol. 1998;23:47–48. PubMed

Barceló J.M., Pluscauskas M., MacKenzie A.E., Tsilfidis C., Narang M., Korneluk R.G. Additive influence of maternal and offspring DM-kinase gene CTG repeat lengths in the genesis of congenital myotonic dystrophy. Am. J. Hum. Genet. 1994;54:1124–1125. PubMed PMC

Hilbert J.E., Johnson N.E., Moxley R.T., 3rd New insights about the incidence, multisystem manifestations, and care of patients with congenital myotonic dystrophy. J. Pediatr. 2013;163:12–14. PubMed

Novelli G., Gennarelli M., Menegazzo E., Angelini C., Dallapiccola B. Discordant clinical outcome in myotonic dystrophy relatives showing (CTG)n > 700 repeats. Neuromuscul. Disord. 1995;5:157–159. PubMed

Spranger M., Janssen B., Rating D., Spranger S. [Disease picture of myotonic muscular dystrophy in patients with large CTG triplet expansion] Nervenarzt. 1999;70:131–135. PubMed

Geifman-Holtzman O., Fay K. Prenatal diagnosis of congenital myotonic dystrophy and counseling of the pregnant mother: case report and literature review. Am. J. Med. Genet. 1998;78:250–253. PubMed

Lavedan C., Hofmann-Radvanyi H., Shelbourne P., Rabes J.P., Duros C., Savoy D., Dehaupas I., Luce S., Johnson K., Junien C. Myotonic dystrophy: size- and sex-dependent dynamics of CTG meiotic instability, and somatic mosaicism. Am. J. Hum. Genet. 1993;52:875–883. PubMed PMC

Campbell C., Levin S., Siu V.M., Venance S., Jacob P. Congenital myotonic dystrophy: Canadian population-based surveillance study. J. Pediatr. 2013;163 120–5.e1, 3. PubMed

Verrijn Stuart A.A., Huisman M., van Straaten H.L., Bakker J.C., Arabin B. “Shake hands”; diagnosing a floppy infant--myotonic dystrophy and the congenital subtype: a difficult perinatal diagnosis. J. Perinat. Med. 2000;28:497–501. PubMed

Dalphin M.L., Noir A., Monnier G., Menget A. [Congenital myotonic dystrophy. Diagnostic difficulties] Pediatrie. 1992;47:677–680. PubMed

DiRocco M., Gennarelli M., Veneselli E., Bado M., Romanengo M., Celle M.E., Cordone G., Borrone C. Diagnostic problems in congenital myotonic dystrophy. Eur. J. Pediatr. 1996;155:995. PubMed

Hojo K., Yamagata H., Moji H., Fujita T., Miki T., Fujimura M., Kidoguchi K. Congenital myotonic dystrophy: molecular diagnosis and clinical study. Am. J. Perinatol. 1995;12:195–200. PubMed

Morales F., Vásquez M., Cuenca P., Campos D., Santamaría C., Del Valle G., Brian R., Sittenfeld M., Monckton D.G. Parental age effects, but no evidence for an intrauterine effect in the transmission of myotonic dystrophy type 1. Eur. J. Hum. Genet. 2015;23:646–653. PubMed PMC

Filippova G.N., Thienes C.P., Penn B.H., Cho D.H., Hu Y.J., Moore J.M., Klesert T.R., Lobanenkov V.V., Tapscott S.J. CTCF-binding sites flank CTG/CAG repeats and form a methylation-sensitive insulator at the DM1 locus. Nat. Genet. 2001;28:335–343. PubMed

Cho D.H., Thienes C.P., Mahoney S.E., Analau E., Filippova G.N., Tapscott S.J. Antisense transcription and heterochromatin at the DM1 CTG repeats are constrained by CTCF. Mol. Cell. 2005;20:483–489. PubMed

Steinbach P., Gläser D., Vogel W., Wolf M., Schwemmle S. The DMPK gene of severely affected myotonic dystrophy patients is hypermethylated proximal to the largely expanded CTG repeat. Am. J. Hum. Genet. 1998;62:278–285. PubMed PMC

López Castel A., Nakamori M., Tomé S., Chitayat D., Gourdon G., Thornton C.A., Pearson C.E. Expanded CTG repeat demarcates a boundary for abnormal CpG methylation in myotonic dystrophy patient tissues. Hum. Mol. Genet. 2011;20:1–15. PubMed PMC

Brouwer J.R., Huguet A., Nicole A., Munnich A., Gourdon G. Transcriptionally repressive chromatin remodelling and CpG methylation in the presence of expanded CTG-repeats at the DM1 locus. J. Nucleic Acids. 2013;2013:567435. PubMed PMC

Yanovsky-Dagan S., Avitzour M., Altarescu G., Renbaum P., Eldar-Geva T., Schonberger O., Mitrani-Rosenbaum S., Levy-Lahad E., Birnbaum R.Y., Gepstein L. Uncovering the role of hypermethylation by CTG expansion in myotonic dystrophy type 1 using mutant human embryonic stem cells. Stem Cell Reports. 2015;5:221–231. PubMed PMC

Koch M.C., Grimm T., Harley H.G., Harper P.S. Genetic risks for children of women with myotonic dystrophy. Am. J. Hum. Genet. 1991;48:1084–1091. PubMed PMC

Afifi A.M., Bhatia A.R., Eyal F. Hydrops fetalis associated with congenital myotonic dystrophy. Am. J. Obstet. Gynecol. 1992;166:929–930. PubMed

Hsu C.D., Feng T.I., Crawford T.O., Johnson T.R. Unusual fetal movement in congenital myotonic dystrophy. Fetal Diagn. Ther. 1993;8:200–202. PubMed

Harley H.G., Rundle S.A., MacMillan J.C., Myring J., Brook J.D., Crow S., Reardon W., Fenton I., Shaw D.J., Harper P.S. Size of the unstable CTG repeat sequence in relation to phenotype and parental transmission in myotonic dystrophy. Am. J. Hum. Genet. 1993;52:1164–1174. PubMed PMC

Steyaert J., Umans S., Willekens D., Legius E., Pijkels E., de Die-Smulders C., Van den Berghe H., Fryns J.P. A study of the cognitive and psychological profile in 16 children with congenital or juvenile myotonic dystrophy. Clin. Genet. 1997;52:135–141. PubMed

Zaki M., Boyd P.A., Impey L., Roberts A., Chamberlain P. Congenital myotonic dystrophy: prenatal ultrasound findings and pregnancy outcome. Ultrasound Obstet. Gynecol. 2007;29:284–288. PubMed

De Antonio M., Dogan C., Hamroun D., Mati M., Zerrouki S., Eymard B., Katsahian S., Bassez G., French Myotonic Dystrophy Clinical Network Unravelling the myotonic dystrophy type 1 clinical spectrum: A systematic registry-based study with implications for disease classification. Rev. Neurol. (Paris) 2016;172:572–580. PubMed

Johnson N.E., Ekstrom A.B., Campbell C., Hung M., Adams H.R., Chen W., Luebbe E., Hilbert J., Moxley R.T., 3rd, Heatwole C.R. Parent-reported multi-national study of the impact of congenital and childhood onset myotonic dystrophy. Dev. Med. Child Neurol. 2016;58:698–705. PubMed PMC

Winblad S., Samuelsson L., Lindberg C., Meola G. Cognition in myotonic dystrophy type 1: a 5-year follow-up study. Eur. J. Neurol. 2016;23:1471–1476. PubMed

Jeffreys A.J., Tamaki K., MacLeod A., Monckton D.G., Neil D.L., Armour J.A. Complex gene conversion events in germline mutation at human minisatellites. Nat. Genet. 1994;6:136–145. PubMed

Jacobs K., Mertzanidou A., Geens M., Nguyen H.T., Staessen C., Spits C. Low-grade chromosomal mosaicism in human somatic and embryonic stem cell populations. Nat. Commun. 2014;5:4227. PubMed

Mateizel I., De Becker A., Van de Velde H., De Rycke M., Van Steirteghem A., Cornelissen R., Van der Elst J., Liebaers I., Van Riet I., Sermon K. Efficient differentiation of human embryonic stem cells into a homogeneous population of osteoprogenitor-like cells. Reprod. Biomed. Online. 2008;16:741–753. PubMed

De Temmerman N., Seneca S., Van Steirteghem A., Haentjens P., Van der Elst J., Liebaers I., Sermon K.D. CTG repeat instability in a human embryonic stem cell line carrying the myotonic dystrophy type 1 mutation. Mol. Hum. Reprod. 2008;14:405–412. PubMed

Seriola A., Spits C., Simard J.P., Hilven P., Haentjens P., Pearson C.E., Sermon K. Huntington’s and myotonic dystrophy hESCs: down-regulated trinucleotide repeat instability and mismatch repair machinery expression upon differentiation. Hum. Mol. Genet. 2011;20:176–185. PubMed

Sambrook, J., and Russell, D.W. (2006). Purification of PCR products in preparation for cloning. CSH protocols 2006. PubMed

Pratte A., Prévost C., Puymirat J., Mathieu J. Anticipation in myotonic dystrophy type 1 parents with small CTG expansions. Am. J. Med. Genet. A. 2015;167A:708–714. PubMed

Musova Z., Mazanec R., Krepelova A., Ehler E., Vales J., Jaklova R., Prochazka T., Koukal P., Marikova T., Kraus J. Highly unstable sequence interruptions of the CTG repeat in the myotonic dystrophy gene. Am. J. Med. Genet. A. 2009;149A:1365–1374. PubMed

Wong L.J., Ashizawa T. Instability of the (CTG)n repeat in congenital myotonic dystrophy. Am. J. Hum. Genet. 1997;61:1445–1448. PubMed PMC

Tachi N., Ohya K., Chiba S., Sato T., Kikuchi K. Minimal somatic instability of CTG repeat in congenital myotonic dystrophy. Pediatr. Neurol. 1995;12:81–83. PubMed

Joseph J.T., Richards C.S., Anthony D.C., Upton M., Perez-Atayde A.R., Greenstein P. Congenital myotonic dystrophy pathology and somatic mosaicism. Neurology. 1997;49:1457–1460. PubMed

Morales F., Couto J.M., Higham C.F., Hogg G., Cuenca P., Braida C., Wilson R.H., Adam B., del Valle G., Brian R. Somatic instability of the expanded CTG triplet repeat in myotonic dystrophy type 1 is a heritable quantitative trait and modifier of disease severity. Hum. Mol. Genet. 2012;21:3558–3567. PubMed

Thornton C.A., Johnson K., Moxley R.T., 3rd Myotonic dystrophy patients have larger CTG expansions in skeletal muscle than in leukocytes. Ann. Neurol. 1994;35:104–107. PubMed

Ohya K., Tachi N., Kon S., Kikuchi K., Chiba S. Somatic cell heterogeneity between DNA extracted from lymphocytes and skeletal muscle in congenital myotonic dystrophy. Jpn. J. Hum. Genet. 1995;40:319–326. PubMed

Zatz M., Passos-Bueno M.R., Cerqueira A., Marie S.K., Vainzof M., Pavanello R.C. Analysis of the CTG repeat in skeletal muscle of young and adult myotonic dystrophy patients: when does the expansion occur? Hum. Mol. Genet. 1995;4:401–406. PubMed

Martorell L., Monckton D.G., Gamez J., Johnson K.J., Gich I., Lopez de Munain A., Baiget M. Progression of somatic CTG repeat length heterogeneity in the blood cells of myotonic dystrophy patients. Hum. Mol. Genet. 1998;7:307–312. PubMed

Martorell L., Gámez J., Cayuela M.L., Gould F.K., McAbney J.P., Ashizawa T., Monckton D.G., Baiget M. Germline mutational dynamics in myotonic dystrophy type 1 males: allele length and age effects. Neurology. 2004;62:269–274. PubMed

Bock C., Reither S., Mikeska T., Paulsen M., Walter J., Lengauer T. BiQ Analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing. Bioinformatics. 2005;21:4067–4068. PubMed

Roifman M., Choufani S., Turinsky A.L., Drewlo S., Keating S., Brudno M., Kingdom J., Weksberg R. Genome-wide placental DNA methylation analysis of severely growth-discordant monochorionic twins reveals novel epigenetic targets for intrauterine growth restriction. Clin. Epigenetics. 2016;8:70. PubMed PMC

Buckley L., Lacey M., Ehrlich M. Epigenetics of the myotonic dystrophy-associated DMPK gene neighborhood. Epigenomics. 2016;8:13–31. PubMed PMC

Boucher C.A., King S.K., Carey N., Krahe R., Winchester C.L., Rahman S., Creavin T., Meghji P., Bailey M.E., Chartier F.L. A novel homeodomain-encoding gene is associated with a large CpG island interrupted by the myotonic dystrophy unstable (CTG)n repeat. Hum. Mol. Genet. 1995;4:1919–1925. PubMed

Ashizawa T., Anvret M., Baiget M., Barceló J.M., Brunner H., Cobo A.M., Dallapiccola B., Fenwick R.G., Jr., Grandell U., Harley H. Characteristics of intergenerational contractions of the CTG repeat in myotonic dystrophy. Am. J. Hum. Genet. 1994;54:414–423. PubMed PMC

López de Munain A., Cobo A.M., Poza J.J., Navarrete D., Martorell L., Palau F., Emparanza J.I., Baiget M. Influence of the sex of the transmitting grandparent in congenital myotonic dystrophy. J. Med. Genet. 1995;32:689–691. PubMed PMC

Brunner H.G., Brüggenwirth H.T., Nillesen W., Jansen G., Hamel B.C., Hoppe R.L., de Die C.E., Höweler C.J., van Oost B.A., Wieringa B. Influence of sex of the transmitting parent as well as of parental allele size on the CTG expansion in myotonic dystrophy (DM) Am. J. Hum. Genet. 1993;53:1016–1023. PubMed PMC

Pearson C.E. Slipping while sleeping? Trinucleotide repeat expansions in germ cells. Trends Mol. Med. 2003;9:490–495. PubMed

Redman J.B., Fenwick R.G., Jr., Fu Y.H., Pizzuti A., Caskey C.T. Relationship between parental trinucleotide GCT repeat length and severity of myotonic dystrophy in offspring. JAMA. 1993;269:1960–1965. PubMed

Rudnik-Schöneborn S., Nicholson G.A., Morgan G., Röhrig D., Zerres K. Different patterns of obstetric complications in myotonic dystrophy in relation to the disease status of the fetus. Am. J. Med. Genet. 1998;80:314–321. PubMed

Harper P.S., Dyken P.R. Early-onset dystrophia myotonica. Evidence supporting a maternal environmental factor. Lancet. 1972;2:53–55. PubMed

Poulton J., Harley H.G., Dasmahapatra J., Brown G.K., Potter C.G., Sykes B. Mitochondrial DNA does not appear to influence the congenital onset type of myotonic dystrophy. J. Med. Genet. 1995;32:732–735. PubMed PMC

Shaw D.J., Chaudhary S., Rundle S.A., Crow S., Brook J.D., Harper P.S., Harley H.G. A study of DNA methylation in myotonic dystrophy. J. Med. Genet. 1993;30:189–192. PubMed PMC

Webb D., Muir I., Faulkner J., Johnson G. Myotonia dystrophica: obstetric complications. Am. J. Obstet. Gynecol. 1978;132:265–270. PubMed

Barua S., Junaid M.A. Lifestyle, pregnancy and epigenetic effects. Epigenomics. 2015;7:85–102. PubMed

Reik W., Surani M.A. Germline and pluripotent stem cells. Cold Spring Harb. Perspect. Biol. 2015;7:7. PubMed PMC

Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature. 2007;447:425–432. PubMed

Lucifero D., Mertineit C., Clarke H.J., Bestor T.H., Trasler J.M. Methylation dynamics of imprinted genes in mouse germ cells. Genomics. 2002;79:530–538. PubMed

Ly L., Chan D., Trasler J.M. Developmental windows of susceptibility for epigenetic inheritance through the male germline. Semin. Cell Dev. Biol. 2015;43:96–105. PubMed

Maatouk D.M., Resnick J.L. Continuing primordial germ cell differentiation in the mouse embryo is a cell-intrinsic program sensitive to DNA methylation. Dev. Biol. 2003;258:201–208. PubMed

Clarke H.J., Vieux K.F. Epigenetic inheritance through the female germ-line: The known, the unknown, and the possible. Semin. Cell Dev. Biol. 2015;43:106–116. PubMed

Sun Y.J., Baumer A. Nonrandom X inactivation and selection of fragile X full mutation in fetal fibroblasts. Am. J. Med. Genet. 1999;86:162–164. PubMed

Malter H.E., Iber J.C., Willemsen R., de Graaff E., Tarleton J.C., Leisti J., Warren S.T., Oostra B.A. Characterization of the full fragile X syndrome mutation in fetal gametes. Nat. Genet. 1997;15:165–169. PubMed

Salat U., Bardoni B., Wöhrle D., Steinbach P. Increase of FMRP expression, raised levels of FMR1 mRNA, and clonal selection in proliferating cells with unmethylated fragile X repeat expansions: a clue to the sex bias in the transmission of full mutations? J. Med. Genet. 2000;37:842–850. PubMed PMC

Willemsen R., Bontekoe C.J., Severijnen L.A., Oostra B.A. Timing of the absence of FMR1 expression in full mutation chorionic villi. Hum. Genet. 2002;110:601–605. PubMed

Brykczynska U., Pecho-Vrieseling E., Thiemeyer A., Klein J., Fruh I., Doll T., Manneville C., Fuchs S., Iazeolla M., Beibel M. CGG repeat-induced FMR1 silencing depends on the expansion size in human iPSCs and neurons carrying unmethylated full mutations. Stem Cell Reports. 2016;7:1059–1071. PubMed PMC

Sarkar P.S., Paul S., Han J., Reddy S. Six5 is required for spermatogenic cell survival and spermiogenesis. Hum. Mol. Genet. 2004;13:1421–1431. PubMed

Vazquez J.A., Pinies J.A., Martul P., De los Rios A., Gatzambide S., Busturia M.A. Hypothalamic-pituitary-testicular function in 70 patients with myotonic dystrophy. J. Endocrinol. Invest. 1990;13:375–379. PubMed

Cleary J.D., Tomé S., López Castel A., Panigrahi G.B., Foiry L., Hagerman K.A., Sroka H., Chitayat D., Gourdon G., Pearson C.E. Tissue- and age-specific DNA replication patterns at the CTG/CAG-expanded human myotonic dystrophy type 1 locus. Nat. Struct. Mol. Biol. 2010;17:1079–1087. PubMed

Monckton D.G., Wong L.J., Ashizawa T., Caskey C.T. Somatic mosaicism, germline expansions, germline reversions and intergenerational reductions in myotonic dystrophy males: small pool PCR analyses. Hum. Mol. Genet. 1995;4:1–8. PubMed

Martorell L., Monckton D.G., Gamez J., Baiget M. Complex patterns of male germline instability and somatic mosaicism in myotonic dystrophy type 1. Eur. J. Hum. Genet. 2000;8:423–430. PubMed

Massari A., Gennarelli M., Menegazzo E., Pizzuti A., Silani V., Mastrogiacomo I., Pagani E., Angelini C., Scarlato G., Novelli G. Postzygotic instability of the myotonic dystrophy p[AGC] in repeat supported by larger expansions in muscle and reduced amplifications in sperm. J. Neurol. 1995;242:379–383. PubMed

Jansen G., Willems P., Coerwinkel M., Nillesen W., Smeets H., Vits L., Höweler C., Brunner H., Wieringa B. Gonosomal mosaicism in myotonic dystrophy patients: involvement of mitotic events in (CTG)n repeat variation and selection against extreme expansion in sperm. Am. J. Hum. Genet. 1994;54:575–585. PubMed PMC

Klesert T.R., Otten A.D., Bird T.D., Tapscott S.J. Trinucleotide repeat expansion at the myotonic dystrophy locus reduces expression of DMAHP. Nat. Genet. 1997;16:402–406. PubMed

Thornton C.A., Wymer J.P., Simmons Z., McClain C., Moxley R.T., 3rd Expansion of the myotonic dystrophy CTG repeat reduces expression of the flanking DMAHP gene. Nat. Genet. 1997;16:407–409. PubMed

Inukai A., Doyu M., Kato T., Liang Y., Kuru S., Yamamoto M., Kobayashi Y., Sobue G. Reduced expression of DMAHP/SIX5 gene in myotonic dystrophy muscle. Muscle Nerve. 2000;23:1421–1426. PubMed

Alwazzan M., Newman E., Hamshere M.G., Brook J.D. Myotonic dystrophy is associated with a reduced level of RNA from the DMWD allele adjacent to the expanded repeat. Hum. Mol. Genet. 1999;8:1491–1497. PubMed

Fu Y.H., Friedman D.L., Richards S., Pearlman J.A., Gibbs R.A., Pizzuti A., Ashizawa T., Perryman M.B., Scarlato G., Fenwick R.G., Jr. Decreased expression of myotonin-protein kinase messenger RNA and protein in adult form of myotonic dystrophy. Science. 1993;260:235–238. PubMed

Sabouri L.A., Mahadevan M.S., Narang M., Lee D.S., Surh L.C., Korneluk R.G. Effect of the myotonic dystrophy (DM) mutation on mRNA levels of the DM gene. Nat. Genet. 1993;4:233–238. PubMed

Depardon F., Cisneros B., Alonso-Vilatela E., Montañez C. Myotonic dystrophy protein kinase (DMPK) gene expression in lymphocytes of patients with myotonic dystrophy. Arch. Med. Res. 2001;32:123–128. PubMed

Hofmann-Radvanyi H., Lavedan C., Rabès J.P., Savoy D., Duros C., Johnson K., Junien C. Myotonic dystrophy: absence of CTG enlarged transcript in congenital forms, and low expression of the normal allele. Hum. Mol. Genet. 1993;2:1263–1266. PubMed

Narang M.A., Waring J.D., Sabourin L.A., Korneluk R.G. Myotonic dystrophy (DM) protein kinase levels in congenital and adult DM patients. Eur. J. Hum. Genet. 2000;8:507–512. PubMed

Hamshere M.G., Newman E.E., Alwazzan M., Athwal B.S., Brook J.D. Transcriptional abnormality in myotonic dystrophy affects DMPK but not neighboring genes. Proc. Natl. Acad. Sci. USA. 1997;94:7394–7399. PubMed PMC

Davis B.M., McCurrach M.E., Taneja K.L., Singer R.H., Housman D.E. Expansion of a CUG trinucleotide repeat in the 3′ untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts. Proc. Natl. Acad. Sci. USA. 1997;94:7388–7393. PubMed PMC

Michel L., Huguet-Lachon A., Gourdon G. Sense and antisense DMPK RNA foci accumulate in DM1 tissues during development. PLoS ONE. 2015;10:e0137620. PubMed PMC

Cobo A.M., Poza J.J., Martorell L., López de Munain A., Emparanza J.I., Baiget M. Contribution of molecular analyses to the estimation of the risk of congenital myotonic dystrophy. J. Med. Genet. 1995;32:105–108. PubMed PMC

Liu G., Chen X., Gao Y., Lewis T., Barthelemy J., Leffak M. Altered replication in human cells promotes DMPK (CTG)(n) · (CAG)(n) repeat instability. Mol. Cell. Biol. 2012;32:1618–1632. PubMed PMC

Langley A.R., Gräf S., Smith J.C., Krude T. Genome-wide identification and characterisation of human DNA replication origins by initiation site sequencing (ini-seq) Nucleic Acids Res. 2016;44:10230–10247. PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...