CpG Methylation, a Parent-of-Origin Effect for Maternal-Biased Transmission of Congenital Myotonic Dystrophy
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
28257691
PubMed Central
PMC5339342
DOI
10.1016/j.ajhg.2017.01.033
PII: S0002-9297(17)30066-6
Knihovny.cz E-zdroje
- Klíčová slova
- DMPK, DNA/CpG methylation, SIX5/DMAHP, congenital myotonic dystrophy, epigenetics, maternal transmission/maternal inheritance, myotonic dystrophy, parent-of-origin effect(s), pre-natal diagnosis, trinucleotide instability,
- MeSH
- buněčné linie MeSH
- CpG ostrůvky * MeSH
- dítě MeSH
- DM-kinasa genetika MeSH
- dospělí MeSH
- lidé MeSH
- lidské embryonální kmenové buňky chemie MeSH
- lineární modely MeSH
- metylace DNA * MeSH
- mladiství MeSH
- mladý dospělý MeSH
- myotonická dystrofie genetika MeSH
- promotorové oblasti (genetika) MeSH
- rodokmen MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- těhotenství MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DM-kinasa MeSH
- DMPK protein, human MeSH Prohlížeč
CTG repeat expansions in DMPK cause myotonic dystrophy (DM1) with a continuum of severity and ages of onset. Congenital DM1 (CDM1), the most severe form, presents distinct clinical features, large expansions, and almost exclusive maternal transmission. The correlation between CDM1 and expansion size is not absolute, suggesting contributions of other factors. We determined CpG methylation flanking the CTG repeat in 79 blood samples from 20 CDM1-affected individuals; 21, 27, and 11 individuals with DM1 but not CDM1 (henceforth non-CDM1) with maternal, paternal, and unknown inheritance; and collections of maternally and paternally derived chorionic villus samples (7 CVSs) and human embryonic stem cells (4 hESCs). All but two CDM1-affected individuals showed high levels of methylation upstream and downstream of the repeat, greater than non-CDM1 individuals (p = 7.04958 × 10-12). Most non-CDM1 individuals were devoid of methylation, where one in six showed downstream methylation. Only two non-CDM1 individuals showed upstream methylation, and these were maternally derived childhood onset, suggesting a continuum of methylation with age of onset. Only maternally derived hESCs and CVSs showed upstream methylation. In contrast, paternally derived samples (27 blood samples, 3 CVSs, and 2 hESCs) never showed upstream methylation. CTG tract length did not strictly correlate with CDM1 or methylation. Thus, methylation patterns flanking the CTG repeat are stronger indicators of CDM1 than repeat size. Spermatogonia with upstream methylation may not survive due to methylation-induced reduced expression of the adjacent SIX5, thereby protecting DM1-affected fathers from having CDM1-affected children. Thus, DMPK methylation may account for the maternal bias for CDM1 transmission, larger maternal CTG expansions, age of onset, and clinical continuum, and may serve as a diagnostic indicator.
Centre for Medical Genetics Universitair Ziekenhuis Brussel Brussels 1090 Belgium
Department for Reproduction and Genetics Vrije Universiteit Brussel Brussels 1090 Belgium
Department of Biology and Medical Genetics Charles University Prague Prague 128 00 Czech Republic
Genetics and Genome Biology The Hospital for Sick Children Toronto ON M5G 0A4 Canada
Groupe de Recherche Interdisciplinaire sur les Maladies Neuromusculaires Saguenay QC 75204 Canada
Zobrazit více v PubMed
Schmidt M.H., Pearson C.E. Disease-associated repeat instability and mismatch repair. DNA Repair (Amst.) 2016;38:117–126. PubMed
Ashizawa T., Dunne C.J., Dubel J.R., Perryman M.B., Epstein H.F., Boerwinkle E., Hejtmancik J.F. Anticipation in myotonic dystrophy. I. Statistical verification based on clinical and haplotype findings. Neurology. 1992;42:1871–1877. PubMed
Ashizawa T., Dubel J.R., Dunne P.W., Dunne C.J., Fu Y.H., Pizzuti A., Caskey C.T., Boerwinkle E., Perryman M.B., Epstein H.F. Anticipation in myotonic dystrophy. II. Complex relationships between clinical findings and structure of the GCT repeat. Neurology. 1992;42:1877–1883. PubMed
Echenne B., Bassez G. Congenital and infantile myotonic dystrophy. Handb. Clin. Neurol. 2013;113:1387–1393. PubMed
Ekström A.B., Hakenäs-Plate L., Samuelsson L., Tulinius M., Wentz E. Autism spectrum conditions in myotonic dystrophy type 1: a study on 57 individuals with congenital and childhood forms. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 2008;147B:918–926. PubMed
Turner C., Hilton-Jones D. The myotonic dystrophies: diagnosis and management. J. Neurol. Neurosurg. Psychiatry. 2010;81:358–367. PubMed
Aslanidis C., Jansen G., Amemiya C., Shutler G., Mahadevan M., Tsilfidis C., Chen C., Alleman J., Wormskamp N.G., Vooijs M. Cloning of the essential myotonic dystrophy region and mapping of the putative defect. Nature. 1992;355:548–551. PubMed
Brook J.D., McCurrach M.E., Harley H.G., Buckler A.J., Church D., Aburatani H., Hunter K., Stanton V.P., Thirion J.P., Hudson T. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell. 1992;69:385. PubMed
Salehi L.B., Bonifazi E., Stasio E.D., Gennarelli M., Botta A., Vallo L., Iraci R., Massa R., Antonini G., Angelini C., Novelli G. Risk prediction for clinical phenotype in myotonic dystrophy type 1: data from 2,650 patients. Genet. Test. 2007;11:84–90. PubMed
Tsilfidis C., MacKenzie A.E., Mettler G., Barceló J., Korneluk R.G. Correlation between CTG trinucleotide repeat length and frequency of severe congenital myotonic dystrophy. Nat. Genet. 1992;1:192–195. PubMed
Myring J., Meredith A.L., Harley H.G., Kohn G., Norbury G., Harper P.S., Shaw D.J. Specific molecular prenatal diagnosis for the CTG mutation in myotonic dystrophy. J. Med. Genet. 1992;29:785–788. PubMed PMC
Di Costanzo A., de Cristofaro M., Di Iorio G., Daniele A., Bonavita S., Tedeschi G. Paternally inherited case of congenital DM1: brain MRI and review of literature. Brain Dev. 2009;31:79–82. PubMed
Zeesman S., Carson N., Whelan D.T. Paternal transmission of the congenital form of myotonic dystrophy type 1: a new case and review of the literature. Am. J. Med. Genet. 2002;107:222–226. PubMed
de Die-Smulders C.E., Smeets H.J., Loots W., Anten H.B., Mirandolle J.F., Geraedts J.P., Höweler C.J. Paternal transmission of congenital myotonic dystrophy. J. Med. Genet. 1997;34:930–933. PubMed PMC
Tanaka Y., Suzuki Y., Shimozawa N., Nanba E., Kondo N. Congenital myotonic dystrophy: report of paternal transmission. Brain Dev. 2000;22:132–134. PubMed
Ohya K., Tachi N., Chiba S., Sato T., Kon S., Kikuchi K., Imamura S., Yamagata H., Miki T. Congenital myotonic dystrophy transmitted from an asymptomatic father with a DM-specific gene. Neurology. 1994;44:1958–1960. PubMed
Bergoffen J., Kant J., Sladky J., McDonald-McGinn D., Zackai E.H., Fischbeck K.H. Paternal transmission of congenital myotonic dystrophy. J. Med. Genet. 1994;31:518–520. PubMed PMC
Cobo A.M., Baiget M., López de Munain A., Poza J.J., Emparanza J.I., Johnson K. Sex-related difference in intergenerational expansion of myotonic dystrophy gene. Lancet. 1993;341:1159–1160. PubMed
Clark C., Petty R.K., Strong A.M. Late presentation of myotonic dystrophy. Clin. Exp. Dermatol. 1998;23:47–48. PubMed
Barceló J.M., Pluscauskas M., MacKenzie A.E., Tsilfidis C., Narang M., Korneluk R.G. Additive influence of maternal and offspring DM-kinase gene CTG repeat lengths in the genesis of congenital myotonic dystrophy. Am. J. Hum. Genet. 1994;54:1124–1125. PubMed PMC
Hilbert J.E., Johnson N.E., Moxley R.T., 3rd New insights about the incidence, multisystem manifestations, and care of patients with congenital myotonic dystrophy. J. Pediatr. 2013;163:12–14. PubMed
Novelli G., Gennarelli M., Menegazzo E., Angelini C., Dallapiccola B. Discordant clinical outcome in myotonic dystrophy relatives showing (CTG)n > 700 repeats. Neuromuscul. Disord. 1995;5:157–159. PubMed
Spranger M., Janssen B., Rating D., Spranger S. [Disease picture of myotonic muscular dystrophy in patients with large CTG triplet expansion] Nervenarzt. 1999;70:131–135. PubMed
Geifman-Holtzman O., Fay K. Prenatal diagnosis of congenital myotonic dystrophy and counseling of the pregnant mother: case report and literature review. Am. J. Med. Genet. 1998;78:250–253. PubMed
Lavedan C., Hofmann-Radvanyi H., Shelbourne P., Rabes J.P., Duros C., Savoy D., Dehaupas I., Luce S., Johnson K., Junien C. Myotonic dystrophy: size- and sex-dependent dynamics of CTG meiotic instability, and somatic mosaicism. Am. J. Hum. Genet. 1993;52:875–883. PubMed PMC
Campbell C., Levin S., Siu V.M., Venance S., Jacob P. Congenital myotonic dystrophy: Canadian population-based surveillance study. J. Pediatr. 2013;163 120–5.e1, 3. PubMed
Verrijn Stuart A.A., Huisman M., van Straaten H.L., Bakker J.C., Arabin B. “Shake hands”; diagnosing a floppy infant--myotonic dystrophy and the congenital subtype: a difficult perinatal diagnosis. J. Perinat. Med. 2000;28:497–501. PubMed
Dalphin M.L., Noir A., Monnier G., Menget A. [Congenital myotonic dystrophy. Diagnostic difficulties] Pediatrie. 1992;47:677–680. PubMed
DiRocco M., Gennarelli M., Veneselli E., Bado M., Romanengo M., Celle M.E., Cordone G., Borrone C. Diagnostic problems in congenital myotonic dystrophy. Eur. J. Pediatr. 1996;155:995. PubMed
Hojo K., Yamagata H., Moji H., Fujita T., Miki T., Fujimura M., Kidoguchi K. Congenital myotonic dystrophy: molecular diagnosis and clinical study. Am. J. Perinatol. 1995;12:195–200. PubMed
Morales F., Vásquez M., Cuenca P., Campos D., Santamaría C., Del Valle G., Brian R., Sittenfeld M., Monckton D.G. Parental age effects, but no evidence for an intrauterine effect in the transmission of myotonic dystrophy type 1. Eur. J. Hum. Genet. 2015;23:646–653. PubMed PMC
Filippova G.N., Thienes C.P., Penn B.H., Cho D.H., Hu Y.J., Moore J.M., Klesert T.R., Lobanenkov V.V., Tapscott S.J. CTCF-binding sites flank CTG/CAG repeats and form a methylation-sensitive insulator at the DM1 locus. Nat. Genet. 2001;28:335–343. PubMed
Cho D.H., Thienes C.P., Mahoney S.E., Analau E., Filippova G.N., Tapscott S.J. Antisense transcription and heterochromatin at the DM1 CTG repeats are constrained by CTCF. Mol. Cell. 2005;20:483–489. PubMed
Steinbach P., Gläser D., Vogel W., Wolf M., Schwemmle S. The DMPK gene of severely affected myotonic dystrophy patients is hypermethylated proximal to the largely expanded CTG repeat. Am. J. Hum. Genet. 1998;62:278–285. PubMed PMC
López Castel A., Nakamori M., Tomé S., Chitayat D., Gourdon G., Thornton C.A., Pearson C.E. Expanded CTG repeat demarcates a boundary for abnormal CpG methylation in myotonic dystrophy patient tissues. Hum. Mol. Genet. 2011;20:1–15. PubMed PMC
Brouwer J.R., Huguet A., Nicole A., Munnich A., Gourdon G. Transcriptionally repressive chromatin remodelling and CpG methylation in the presence of expanded CTG-repeats at the DM1 locus. J. Nucleic Acids. 2013;2013:567435. PubMed PMC
Yanovsky-Dagan S., Avitzour M., Altarescu G., Renbaum P., Eldar-Geva T., Schonberger O., Mitrani-Rosenbaum S., Levy-Lahad E., Birnbaum R.Y., Gepstein L. Uncovering the role of hypermethylation by CTG expansion in myotonic dystrophy type 1 using mutant human embryonic stem cells. Stem Cell Reports. 2015;5:221–231. PubMed PMC
Koch M.C., Grimm T., Harley H.G., Harper P.S. Genetic risks for children of women with myotonic dystrophy. Am. J. Hum. Genet. 1991;48:1084–1091. PubMed PMC
Afifi A.M., Bhatia A.R., Eyal F. Hydrops fetalis associated with congenital myotonic dystrophy. Am. J. Obstet. Gynecol. 1992;166:929–930. PubMed
Hsu C.D., Feng T.I., Crawford T.O., Johnson T.R. Unusual fetal movement in congenital myotonic dystrophy. Fetal Diagn. Ther. 1993;8:200–202. PubMed
Harley H.G., Rundle S.A., MacMillan J.C., Myring J., Brook J.D., Crow S., Reardon W., Fenton I., Shaw D.J., Harper P.S. Size of the unstable CTG repeat sequence in relation to phenotype and parental transmission in myotonic dystrophy. Am. J. Hum. Genet. 1993;52:1164–1174. PubMed PMC
Steyaert J., Umans S., Willekens D., Legius E., Pijkels E., de Die-Smulders C., Van den Berghe H., Fryns J.P. A study of the cognitive and psychological profile in 16 children with congenital or juvenile myotonic dystrophy. Clin. Genet. 1997;52:135–141. PubMed
Zaki M., Boyd P.A., Impey L., Roberts A., Chamberlain P. Congenital myotonic dystrophy: prenatal ultrasound findings and pregnancy outcome. Ultrasound Obstet. Gynecol. 2007;29:284–288. PubMed
De Antonio M., Dogan C., Hamroun D., Mati M., Zerrouki S., Eymard B., Katsahian S., Bassez G., French Myotonic Dystrophy Clinical Network Unravelling the myotonic dystrophy type 1 clinical spectrum: A systematic registry-based study with implications for disease classification. Rev. Neurol. (Paris) 2016;172:572–580. PubMed
Johnson N.E., Ekstrom A.B., Campbell C., Hung M., Adams H.R., Chen W., Luebbe E., Hilbert J., Moxley R.T., 3rd, Heatwole C.R. Parent-reported multi-national study of the impact of congenital and childhood onset myotonic dystrophy. Dev. Med. Child Neurol. 2016;58:698–705. PubMed PMC
Winblad S., Samuelsson L., Lindberg C., Meola G. Cognition in myotonic dystrophy type 1: a 5-year follow-up study. Eur. J. Neurol. 2016;23:1471–1476. PubMed
Jeffreys A.J., Tamaki K., MacLeod A., Monckton D.G., Neil D.L., Armour J.A. Complex gene conversion events in germline mutation at human minisatellites. Nat. Genet. 1994;6:136–145. PubMed
Jacobs K., Mertzanidou A., Geens M., Nguyen H.T., Staessen C., Spits C. Low-grade chromosomal mosaicism in human somatic and embryonic stem cell populations. Nat. Commun. 2014;5:4227. PubMed
Mateizel I., De Becker A., Van de Velde H., De Rycke M., Van Steirteghem A., Cornelissen R., Van der Elst J., Liebaers I., Van Riet I., Sermon K. Efficient differentiation of human embryonic stem cells into a homogeneous population of osteoprogenitor-like cells. Reprod. Biomed. Online. 2008;16:741–753. PubMed
De Temmerman N., Seneca S., Van Steirteghem A., Haentjens P., Van der Elst J., Liebaers I., Sermon K.D. CTG repeat instability in a human embryonic stem cell line carrying the myotonic dystrophy type 1 mutation. Mol. Hum. Reprod. 2008;14:405–412. PubMed
Seriola A., Spits C., Simard J.P., Hilven P., Haentjens P., Pearson C.E., Sermon K. Huntington’s and myotonic dystrophy hESCs: down-regulated trinucleotide repeat instability and mismatch repair machinery expression upon differentiation. Hum. Mol. Genet. 2011;20:176–185. PubMed
Sambrook, J., and Russell, D.W. (2006). Purification of PCR products in preparation for cloning. CSH protocols 2006. PubMed
Pratte A., Prévost C., Puymirat J., Mathieu J. Anticipation in myotonic dystrophy type 1 parents with small CTG expansions. Am. J. Med. Genet. A. 2015;167A:708–714. PubMed
Musova Z., Mazanec R., Krepelova A., Ehler E., Vales J., Jaklova R., Prochazka T., Koukal P., Marikova T., Kraus J. Highly unstable sequence interruptions of the CTG repeat in the myotonic dystrophy gene. Am. J. Med. Genet. A. 2009;149A:1365–1374. PubMed
Wong L.J., Ashizawa T. Instability of the (CTG)n repeat in congenital myotonic dystrophy. Am. J. Hum. Genet. 1997;61:1445–1448. PubMed PMC
Tachi N., Ohya K., Chiba S., Sato T., Kikuchi K. Minimal somatic instability of CTG repeat in congenital myotonic dystrophy. Pediatr. Neurol. 1995;12:81–83. PubMed
Joseph J.T., Richards C.S., Anthony D.C., Upton M., Perez-Atayde A.R., Greenstein P. Congenital myotonic dystrophy pathology and somatic mosaicism. Neurology. 1997;49:1457–1460. PubMed
Morales F., Couto J.M., Higham C.F., Hogg G., Cuenca P., Braida C., Wilson R.H., Adam B., del Valle G., Brian R. Somatic instability of the expanded CTG triplet repeat in myotonic dystrophy type 1 is a heritable quantitative trait and modifier of disease severity. Hum. Mol. Genet. 2012;21:3558–3567. PubMed
Thornton C.A., Johnson K., Moxley R.T., 3rd Myotonic dystrophy patients have larger CTG expansions in skeletal muscle than in leukocytes. Ann. Neurol. 1994;35:104–107. PubMed
Ohya K., Tachi N., Kon S., Kikuchi K., Chiba S. Somatic cell heterogeneity between DNA extracted from lymphocytes and skeletal muscle in congenital myotonic dystrophy. Jpn. J. Hum. Genet. 1995;40:319–326. PubMed
Zatz M., Passos-Bueno M.R., Cerqueira A., Marie S.K., Vainzof M., Pavanello R.C. Analysis of the CTG repeat in skeletal muscle of young and adult myotonic dystrophy patients: when does the expansion occur? Hum. Mol. Genet. 1995;4:401–406. PubMed
Martorell L., Monckton D.G., Gamez J., Johnson K.J., Gich I., Lopez de Munain A., Baiget M. Progression of somatic CTG repeat length heterogeneity in the blood cells of myotonic dystrophy patients. Hum. Mol. Genet. 1998;7:307–312. PubMed
Martorell L., Gámez J., Cayuela M.L., Gould F.K., McAbney J.P., Ashizawa T., Monckton D.G., Baiget M. Germline mutational dynamics in myotonic dystrophy type 1 males: allele length and age effects. Neurology. 2004;62:269–274. PubMed
Bock C., Reither S., Mikeska T., Paulsen M., Walter J., Lengauer T. BiQ Analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing. Bioinformatics. 2005;21:4067–4068. PubMed
Roifman M., Choufani S., Turinsky A.L., Drewlo S., Keating S., Brudno M., Kingdom J., Weksberg R. Genome-wide placental DNA methylation analysis of severely growth-discordant monochorionic twins reveals novel epigenetic targets for intrauterine growth restriction. Clin. Epigenetics. 2016;8:70. PubMed PMC
Buckley L., Lacey M., Ehrlich M. Epigenetics of the myotonic dystrophy-associated DMPK gene neighborhood. Epigenomics. 2016;8:13–31. PubMed PMC
Boucher C.A., King S.K., Carey N., Krahe R., Winchester C.L., Rahman S., Creavin T., Meghji P., Bailey M.E., Chartier F.L. A novel homeodomain-encoding gene is associated with a large CpG island interrupted by the myotonic dystrophy unstable (CTG)n repeat. Hum. Mol. Genet. 1995;4:1919–1925. PubMed
Ashizawa T., Anvret M., Baiget M., Barceló J.M., Brunner H., Cobo A.M., Dallapiccola B., Fenwick R.G., Jr., Grandell U., Harley H. Characteristics of intergenerational contractions of the CTG repeat in myotonic dystrophy. Am. J. Hum. Genet. 1994;54:414–423. PubMed PMC
López de Munain A., Cobo A.M., Poza J.J., Navarrete D., Martorell L., Palau F., Emparanza J.I., Baiget M. Influence of the sex of the transmitting grandparent in congenital myotonic dystrophy. J. Med. Genet. 1995;32:689–691. PubMed PMC
Brunner H.G., Brüggenwirth H.T., Nillesen W., Jansen G., Hamel B.C., Hoppe R.L., de Die C.E., Höweler C.J., van Oost B.A., Wieringa B. Influence of sex of the transmitting parent as well as of parental allele size on the CTG expansion in myotonic dystrophy (DM) Am. J. Hum. Genet. 1993;53:1016–1023. PubMed PMC
Pearson C.E. Slipping while sleeping? Trinucleotide repeat expansions in germ cells. Trends Mol. Med. 2003;9:490–495. PubMed
Redman J.B., Fenwick R.G., Jr., Fu Y.H., Pizzuti A., Caskey C.T. Relationship between parental trinucleotide GCT repeat length and severity of myotonic dystrophy in offspring. JAMA. 1993;269:1960–1965. PubMed
Rudnik-Schöneborn S., Nicholson G.A., Morgan G., Röhrig D., Zerres K. Different patterns of obstetric complications in myotonic dystrophy in relation to the disease status of the fetus. Am. J. Med. Genet. 1998;80:314–321. PubMed
Harper P.S., Dyken P.R. Early-onset dystrophia myotonica. Evidence supporting a maternal environmental factor. Lancet. 1972;2:53–55. PubMed
Poulton J., Harley H.G., Dasmahapatra J., Brown G.K., Potter C.G., Sykes B. Mitochondrial DNA does not appear to influence the congenital onset type of myotonic dystrophy. J. Med. Genet. 1995;32:732–735. PubMed PMC
Shaw D.J., Chaudhary S., Rundle S.A., Crow S., Brook J.D., Harper P.S., Harley H.G. A study of DNA methylation in myotonic dystrophy. J. Med. Genet. 1993;30:189–192. PubMed PMC
Webb D., Muir I., Faulkner J., Johnson G. Myotonia dystrophica: obstetric complications. Am. J. Obstet. Gynecol. 1978;132:265–270. PubMed
Barua S., Junaid M.A. Lifestyle, pregnancy and epigenetic effects. Epigenomics. 2015;7:85–102. PubMed
Reik W., Surani M.A. Germline and pluripotent stem cells. Cold Spring Harb. Perspect. Biol. 2015;7:7. PubMed PMC
Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature. 2007;447:425–432. PubMed
Lucifero D., Mertineit C., Clarke H.J., Bestor T.H., Trasler J.M. Methylation dynamics of imprinted genes in mouse germ cells. Genomics. 2002;79:530–538. PubMed
Ly L., Chan D., Trasler J.M. Developmental windows of susceptibility for epigenetic inheritance through the male germline. Semin. Cell Dev. Biol. 2015;43:96–105. PubMed
Maatouk D.M., Resnick J.L. Continuing primordial germ cell differentiation in the mouse embryo is a cell-intrinsic program sensitive to DNA methylation. Dev. Biol. 2003;258:201–208. PubMed
Clarke H.J., Vieux K.F. Epigenetic inheritance through the female germ-line: The known, the unknown, and the possible. Semin. Cell Dev. Biol. 2015;43:106–116. PubMed
Sun Y.J., Baumer A. Nonrandom X inactivation and selection of fragile X full mutation in fetal fibroblasts. Am. J. Med. Genet. 1999;86:162–164. PubMed
Malter H.E., Iber J.C., Willemsen R., de Graaff E., Tarleton J.C., Leisti J., Warren S.T., Oostra B.A. Characterization of the full fragile X syndrome mutation in fetal gametes. Nat. Genet. 1997;15:165–169. PubMed
Salat U., Bardoni B., Wöhrle D., Steinbach P. Increase of FMRP expression, raised levels of FMR1 mRNA, and clonal selection in proliferating cells with unmethylated fragile X repeat expansions: a clue to the sex bias in the transmission of full mutations? J. Med. Genet. 2000;37:842–850. PubMed PMC
Willemsen R., Bontekoe C.J., Severijnen L.A., Oostra B.A. Timing of the absence of FMR1 expression in full mutation chorionic villi. Hum. Genet. 2002;110:601–605. PubMed
Brykczynska U., Pecho-Vrieseling E., Thiemeyer A., Klein J., Fruh I., Doll T., Manneville C., Fuchs S., Iazeolla M., Beibel M. CGG repeat-induced FMR1 silencing depends on the expansion size in human iPSCs and neurons carrying unmethylated full mutations. Stem Cell Reports. 2016;7:1059–1071. PubMed PMC
Sarkar P.S., Paul S., Han J., Reddy S. Six5 is required for spermatogenic cell survival and spermiogenesis. Hum. Mol. Genet. 2004;13:1421–1431. PubMed
Vazquez J.A., Pinies J.A., Martul P., De los Rios A., Gatzambide S., Busturia M.A. Hypothalamic-pituitary-testicular function in 70 patients with myotonic dystrophy. J. Endocrinol. Invest. 1990;13:375–379. PubMed
Cleary J.D., Tomé S., López Castel A., Panigrahi G.B., Foiry L., Hagerman K.A., Sroka H., Chitayat D., Gourdon G., Pearson C.E. Tissue- and age-specific DNA replication patterns at the CTG/CAG-expanded human myotonic dystrophy type 1 locus. Nat. Struct. Mol. Biol. 2010;17:1079–1087. PubMed
Monckton D.G., Wong L.J., Ashizawa T., Caskey C.T. Somatic mosaicism, germline expansions, germline reversions and intergenerational reductions in myotonic dystrophy males: small pool PCR analyses. Hum. Mol. Genet. 1995;4:1–8. PubMed
Martorell L., Monckton D.G., Gamez J., Baiget M. Complex patterns of male germline instability and somatic mosaicism in myotonic dystrophy type 1. Eur. J. Hum. Genet. 2000;8:423–430. PubMed
Massari A., Gennarelli M., Menegazzo E., Pizzuti A., Silani V., Mastrogiacomo I., Pagani E., Angelini C., Scarlato G., Novelli G. Postzygotic instability of the myotonic dystrophy p[AGC] in repeat supported by larger expansions in muscle and reduced amplifications in sperm. J. Neurol. 1995;242:379–383. PubMed
Jansen G., Willems P., Coerwinkel M., Nillesen W., Smeets H., Vits L., Höweler C., Brunner H., Wieringa B. Gonosomal mosaicism in myotonic dystrophy patients: involvement of mitotic events in (CTG)n repeat variation and selection against extreme expansion in sperm. Am. J. Hum. Genet. 1994;54:575–585. PubMed PMC
Klesert T.R., Otten A.D., Bird T.D., Tapscott S.J. Trinucleotide repeat expansion at the myotonic dystrophy locus reduces expression of DMAHP. Nat. Genet. 1997;16:402–406. PubMed
Thornton C.A., Wymer J.P., Simmons Z., McClain C., Moxley R.T., 3rd Expansion of the myotonic dystrophy CTG repeat reduces expression of the flanking DMAHP gene. Nat. Genet. 1997;16:407–409. PubMed
Inukai A., Doyu M., Kato T., Liang Y., Kuru S., Yamamoto M., Kobayashi Y., Sobue G. Reduced expression of DMAHP/SIX5 gene in myotonic dystrophy muscle. Muscle Nerve. 2000;23:1421–1426. PubMed
Alwazzan M., Newman E., Hamshere M.G., Brook J.D. Myotonic dystrophy is associated with a reduced level of RNA from the DMWD allele adjacent to the expanded repeat. Hum. Mol. Genet. 1999;8:1491–1497. PubMed
Fu Y.H., Friedman D.L., Richards S., Pearlman J.A., Gibbs R.A., Pizzuti A., Ashizawa T., Perryman M.B., Scarlato G., Fenwick R.G., Jr. Decreased expression of myotonin-protein kinase messenger RNA and protein in adult form of myotonic dystrophy. Science. 1993;260:235–238. PubMed
Sabouri L.A., Mahadevan M.S., Narang M., Lee D.S., Surh L.C., Korneluk R.G. Effect of the myotonic dystrophy (DM) mutation on mRNA levels of the DM gene. Nat. Genet. 1993;4:233–238. PubMed
Depardon F., Cisneros B., Alonso-Vilatela E., Montañez C. Myotonic dystrophy protein kinase (DMPK) gene expression in lymphocytes of patients with myotonic dystrophy. Arch. Med. Res. 2001;32:123–128. PubMed
Hofmann-Radvanyi H., Lavedan C., Rabès J.P., Savoy D., Duros C., Johnson K., Junien C. Myotonic dystrophy: absence of CTG enlarged transcript in congenital forms, and low expression of the normal allele. Hum. Mol. Genet. 1993;2:1263–1266. PubMed
Narang M.A., Waring J.D., Sabourin L.A., Korneluk R.G. Myotonic dystrophy (DM) protein kinase levels in congenital and adult DM patients. Eur. J. Hum. Genet. 2000;8:507–512. PubMed
Hamshere M.G., Newman E.E., Alwazzan M., Athwal B.S., Brook J.D. Transcriptional abnormality in myotonic dystrophy affects DMPK but not neighboring genes. Proc. Natl. Acad. Sci. USA. 1997;94:7394–7399. PubMed PMC
Davis B.M., McCurrach M.E., Taneja K.L., Singer R.H., Housman D.E. Expansion of a CUG trinucleotide repeat in the 3′ untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts. Proc. Natl. Acad. Sci. USA. 1997;94:7388–7393. PubMed PMC
Michel L., Huguet-Lachon A., Gourdon G. Sense and antisense DMPK RNA foci accumulate in DM1 tissues during development. PLoS ONE. 2015;10:e0137620. PubMed PMC
Cobo A.M., Poza J.J., Martorell L., López de Munain A., Emparanza J.I., Baiget M. Contribution of molecular analyses to the estimation of the risk of congenital myotonic dystrophy. J. Med. Genet. 1995;32:105–108. PubMed PMC
Liu G., Chen X., Gao Y., Lewis T., Barthelemy J., Leffak M. Altered replication in human cells promotes DMPK (CTG)(n) · (CAG)(n) repeat instability. Mol. Cell. Biol. 2012;32:1618–1632. PubMed PMC
Langley A.R., Gräf S., Smith J.C., Krude T. Genome-wide identification and characterisation of human DNA replication origins by initiation site sequencing (ini-seq) Nucleic Acids Res. 2016;44:10230–10247. PubMed PMC