Enhancement of temozolomide stability by loading in chitosan-carboxylated polylactide-based nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28260965
PubMed Central
PMC5313595
DOI
10.1007/s11051-017-3756-3
PII: 3756
Knihovny.cz E-zdroje
- Klíčová slova
- Chitosan, Drug delivery, Encapsulation, Nanomedicine, Nanoparticles, Polylactic acid, Temozolomide,
- Publikační typ
- časopisecké články MeSH
In the presented work, amphiphilic nanoparticles based on chitosan and carboxy-enriched polylactic acid have been prepared to improve the stability of the pro-drug temozolomide in physiological media by encapsulation. The carrier, with a diameter in the range of 150-180 nm, was able to accommodate up to 800 μg of temozolomide per mg of polymer. The obtained formulation showed good stability in physiological condition and preparation media up to 1 month. Temozolomide loaded inside the carrier exhibited greater stability than the free drug, in particular in simulated physiological solution at pH 7.4 where the hydrolysis in the inactive metabolite was clearly delayed. CS-SPLA nanoparticles demonstrated a pH-dependent TMZ release kinetics with the opportunity to increase or decrease the rate. Mass spectroscopy, UV-Vis analysis, and in vitro cell tests confirmed the improvement in temozolomide stability and effectiveness when loaded into the polymeric carrier, in comparison with the free drug.
Zobrazit více v PubMed
Abdelwahed W, Degobert G, Stainmesse S, Fessi H. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev. 2006;58(15):1688–1713. doi: 10.1016/j.addr.2006.09.017. PubMed DOI
Abdelwahed W, Degobert G, Fessi H. A pilot study of freeze drying of poly (epsilon-caprolactone) nanocapsules stabilized by poly (vinyl alcohol): formulation and process optimization. Int J. 2006;309(1):178–188. PubMed
Abdelwahed W, Degobert G, Fessi H. Investigation of nanocapsules stabilization by amorphous excipients during freeze-drying and storage. Eur J Pharm and Biopharm. 2006;63(2):87–94. doi: 10.1016/j.ejpb.2006.01.015. PubMed DOI
Agarwala SS, Kirkwood JM. Promising new drugs and combinations. Oncologist. 2000;5:144–151. doi: 10.1634/theoncologist.5-2-144. PubMed DOI
Agarwala SS, Kirkwood JM. Temozolomide, a novel alkylating agent with activity in the central nervous system, may improve the treatment of advanced metastatic melanoma. Oncologist. 2000;5(2):144–151. doi: 10.1634/theoncologist.5-2-144. PubMed DOI
Allard E, Passirani C, Benoit JP. Convection-enhanced delivery of nanocarriers for the treatment of brain tumours. Biomaterials. 2009;30(12):2302–2318. doi: 10.1016/j.biomaterials.2009.01.003. PubMed DOI
Ananta SJ, Paulmurugan R, Massoud TF. Temozolomide-loaded PLGA nanoparticles to treat glioblastoma cells: a biophysical and cell culture evaluation. Neurol Res. 2016;38(1):51–59. doi: 10.1080/01616412.2015.1133025. PubMed DOI
Appel EA, Rowland MJ, Loh XJ, Heywood RM, Watts C, Scherman OA. Enhanced stability and activity of temozolomide in primary glioblastoma multiforme cells with cucurbit [n] uril. Chem Comm. 2012;48(79):9843–9845. doi: 10.1039/c2cc35131e. PubMed DOI
Bajpai AK, Anjali G (2003) Water sorption behavior of highly swelling (carboxy methylcellulose-gpolyacrylamide) hydrogels and release of potassium nitrate as agrochemical. Carbohydr Polym 53(3):271-279
Bajpai J, Maan GK, Bajpai AK. Preparation, characterization and water uptake behavior of polysaccharide based nanoparticles: swelling behaviour of nanoparticles. Prog Nanotech Nanomater. 2012;1:9–17.
Baker SD, Wirth M, Statkevich P, Reidenberg P, Alton K, Sartorius SE, Donehower RC. Absorption, metabolism, and excretion of 14C-temozolomide following oral administration to patients with advanced cancer. Clin Cancer Res. 1999;5(2):309–317. PubMed
Bowman K, Leong KW (2006) Chitosan nanoparticles for oral drug and gene delivery. Int J Nanomedicine 1(2):117-128 PubMed PMC
Cho K, Wang XU, Nie S, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008;14(5):1310–1316. doi: 10.1158/1078-0432.CCR-07-1441. PubMed DOI
Chowdhury SK, Laudicina D, Blumenkrantz N, Wirth M, Alton KB. An LC/MS/MS method for the quantitation of MTIC (5-(3-N-methyltriazen-1-yl)-imidazole-4-carboxamide), a bioconversion product of temozolomide, in rat and dog plasma. J Pharmaceut Biomed. 1999;19(5):659–668. doi: 10.1016/S0731-7085(98)00198-8. PubMed DOI
Darkes MJ, Plosker GL, Jarvis B. Temozolomide. Am J Cancer. 2002;1(1):55–80. doi: 10.2165/00024669-200201010-00006. DOI
Denny BJ, Wheelhouse RT, Stevens MF, Tsang LL, Slack JA (1994) NMR and molecular modeling investigation of the mechanism of activation of the antitumor drug temozolomide and its interaction with DNA. Biochem 33(31):9045-9051 PubMed
Di Martino A, Sedlarik V. Amphiphilic chitosan-grafted-functionalized polylactic acid based nanoparticles as a delivery system for doxorubicin and temozolomide co-therapy. Int J Pharm. 2014;474(1):134–145. doi: 10.1016/j.ijpharm.2014.08.014. PubMed DOI
Di Martino A, Kucharczyk P, Zednik J, Sedlarik V. Chitosan grafted low molecular weight polylactic acid for protein encapsulation and burst effect reduction. Int J Pharm. 2015;496(2):912–921. doi: 10.1016/j.ijpharm.2015.10.017. PubMed DOI
Di Martino A, Pavelkova A, Maciulyte S, Budriene S, Sedlarik V. Polysaccharide-based nanocomplexes for co-encapsulation and controlled release of 5-fluorouracil and temozolomide. Eur J Pharm Sci. 2016;92:276–286. doi: 10.1016/j.ejps.2016.05.001. PubMed DOI
Dresemann G. Temozolomide in malignant glioma. Onco Targets Ther. 2010;3:139–146. doi: 10.2147/OTT.S5480. PubMed DOI PMC
Drumright RE, Gruber PR, Henton DE. Polylactic acid technology. Advanced Mmaterials. 2000;12(23):1841–1846. doi: 10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E. DOI
El-Sharief AMS, Al-Amri AM, Al-Raqa SY. Halogenated, alkylated and new types of imidazolidine, pyrrolidine, imidazotriazine and thienoimidazole derivatives with biological and antitumor activities. J Sulfur Chem. 2006;27(03):245–263. doi: 10.1080/17415990600631316. DOI
Fahr A, Liu X. Drug delivery strategies for poorly water-soluble drugs. Expert Opin Drug Del. 2007;4(4):403–416. doi: 10.1517/17425247.4.4.403. PubMed DOI
Fiore D, Jackson AJ, Didolkar MS, Dandu VR. Simultaneous determination of dacarbazine, its photolytic degradation product, 2-azahypoxanthine, and the metabolite 5-aminoimidazole-4-carboxamide in plasma and urine by high-pressure liquid chromatography. Antimicrob Agents Chemother. 1985;27(6):977–979. doi: 10.1128/AAC.27.6.977. PubMed DOI PMC
Gasmi H, et al. Does PLGA microparticle swelling control drug release? New insight based on single particle swelling studies. J Control Release. 2015;213:120–127. doi: 10.1016/j.jconrel.2015.06.039. PubMed DOI
Ge W, Li D, Chen M, Wang X, Liu S, Sun R. Characterization and antioxidant activity of β-carotene loaded chitosan-graft-poly (lactide) nanomicelles. Carbohydr Polym. 2015;117:169–176. doi: 10.1016/j.carbpol.2014.09.056. PubMed DOI
Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Bromberg JE. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003. doi: 10.1056/NEJMoa043331. PubMed DOI
Huang S, Wan Y, Wang Z, Wu J. Folate-conjugated chitosan–polylactide nanoparticles for enhanced intracellular uptake of anticancer drug. JNR. 2013;15(12):1–15.
Jain DS, Athawale RB, Bajaj AN, Shrikhande SS, Goel PN, Nikam Y, Gude RP (2014) Unraveling the cytotoxic potential of Temozolomide loaded into PLGA nanoparticles. DARU 22(1):18 PubMed PMC
Jakobsen SN, Hardie DG, Morrice N, Tornqvist HE (2001). 5'-AMP-activated protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamide riboside. J Biol Chem 14, 276, 50, 46912–46916 PubMed
Jeyarama AS, Paulmurugan R, Tarik FM (2016) Temozolomide-loaded PLGA nanoparticles to treat glioblastoma cells: a biophysical and cell culture evaluation. Neurol Res 38(1):51-59 PubMed
Juillerat-Jeanneret L. The targeted delivery of cancer drugs across the blood–brain barrier: chemical modifications of drugs or drug-nanoparticles? Drug Discov Today. 2008;13(23):1099–1106. doi: 10.1016/j.drudis.2008.09.005. PubMed DOI
Kim H, Likhari P, Parker D, Statkevich P, Marco A, Lin CC, Nomeir AA. High-performance liquid chromatographic analysis and stability of anti-tumor agent temozolomide in human plasma. J Pharm Biomed Anal. 2001;24(3):461–468. doi: 10.1016/S0731-7085(00)00466-0. PubMed DOI
Koo YEL, Reddy GR, Bhojani M, Schneider R, Philbert MA, Rehemtulla A, Kopelman R. Brain cancer diagnosis and therapy with nanoplatforms. Adv Drug Deliver Rev. 2006;58(14):1556–1577. doi: 10.1016/j.addr.2006.09.012. PubMed DOI
Kucharczyk P, Zednik J, Sedlarik V (2016). Star-shaped carboxyl group functionalized poly(lactic) prepared through polycondensation reaction. Submitted fopr publication to Macromolecular chemistry and Physics 2016- Under revision
Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75(1):1–18. doi: 10.1016/j.colsurfb.2009.09.001. PubMed DOI
Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L. The cucurbit [n] uril family. AngewChem Int Ed. 2005;44(31):4844–4870. doi: 10.1002/anie.200460675. PubMed DOI
Lanz-Landázuri A, García-Alvarez M, Portilla-Arias J, Martínez de Ilarduya A, Patil R, Holler E, Muñoz-Guerra S. Poly (methyl malate) nanoparticles: formation, degradation, and encapsulation of anticancer drugs. Macromol Biosci. 2011;11(10):1370–1377. doi: 10.1002/mabi.201100107. PubMed DOI PMC
Lazzari S, Moscatelli D, Codari F, Salmona M, Morbidelli M, Diomede L. Colloidal stability of polymeric nanoparticles in biological fluids. JNR. 2012;14(6):1–10. PubMed PMC
Ling Y, Wei K, Zou F, Zhong S. Temozolomide loaded PLGA-based superparamagnetic nanoparticles for magnetic resonance imaging and treatment of malignant glioma. Int J Pharm. 2012;430(1):266–275. doi: 10.1016/j.ijpharm.2012.03.047. PubMed DOI
Lopes IC, de Oliveira SCB, Oliveira-Brett AM. Temozolomide chemical degradation to 5-aminoimidazole-4-carboxamide–electrochemical study. J Electroanal Chem. 2013;704:183–189. doi: 10.1016/j.jelechem.2013.07.011. DOI
Lu W, Sun Q, Wan J, She Z, Jiang XG. Cationic albumin–conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration. Cancer Res. 2006;66(24):11878–11887. doi: 10.1158/0008-5472.CAN-06-2354. PubMed DOI
Matosiuk D, Fidecka S, Antkiewicz-Michaluk L, Lipkowski J, Dybala I, Koziol AE. Synthesis and pharmacological activity of new carbonyl derivatives of 1-aryl-2-iminoimidazolidine: part 2. Synthesis and pharmacological activity of 1, 6-diaryl-5, 7 (1H) dioxo-2, 3-dihydroimidazo [1, 2-a][1, 3, 5] triazines. Eur J Med Chem. 2002;37(9):761–772. doi: 10.1016/S0223-5234(02)01408-3. PubMed DOI
McCarron PA, Hall M (2004) Pharmaceutical nanotechnology. Encycl Nanosci Nanotechnol 8:469-487
Meer L, Janzer RC, Kleihues P, Kolar GF. In vivo metabolism and reaction with DNA of the cytostatic agent, 5-(3, 3-dimethyl-1-triazeno) imidazole-4-carboxamide (DTIC) Biochem Pharmacol. 1986;35(19):3243–3247. doi: 10.1016/0006-2952(86)90419-3. PubMed DOI
Mehare G, Sengodan T, Tamizharasi S, Sivakumar T, Sawarkar S, Piyush CP (2015) Formulation and characterization of pla nanoparticles of temozolomide. EJPMR 2(5):1089-1100
Nygren H, Eksborg S. Stability of temozolomide in solutions aimed for oral treatment prepared from a commercially available powder for infusion. Pharm Methods. 2012;3:1,1–1,3. doi: 10.4103/2229-4708.97700. PubMed DOI PMC
Pasparakis G, Bouropoulos N. Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate–chitosan beads. Int J Pharm. 2006;323(1):34–42. doi: 10.1016/j.ijpharm.2006.05.054. PubMed DOI
Pikal MJ. Freeze drying. In: Swarbrick J, editor. Encyclopedia of pharmaceutical technology. New York: Marcel Dekker; 2002. pp. 1299–1326.
Sinha VR, Kumria R. Polysaccharides in colon-specific drug delivery. Int J Pharm. 2001;224(1):19–38. doi: 10.1016/S0378-5173(01)00720-7. PubMed DOI
Soares PI, Sousa AI, Silva JC, Ferreira IM, Novo CM, Borges JP. Chitosan-based nanoparticles as drug delivery systems for doxorubicin: optimization and modelling. Carbohydr Polym. 2016;147:304–312. doi: 10.1016/j.carbpol.2016.03.028. PubMed DOI
Srivastava G, Walke S, Dhavale D, Gade W, Doshi J, Kumar R, Doshi P. Tartrate/tripolyphosphate as co-crosslinker for water soluble chitosan used in protein antigens encapsulation. Int J Biol Macromolec. 2016;91:381–393. doi: 10.1016/j.ijbiomac.2016.05.099. PubMed DOI
Tian XH, Lin XN, Wei F, Feng W, Huang ZC, Wang P, Diao Y. Enhanced brain targeting of temozolomide in polysorbate-80 coated polybutylcyanoacrylate nanoparticles. Int J Nanomedicine. 2011;6:445–452. PubMed PMC
Tyndall EM, Draffan AG, Frey B, Pool B, Halim R, Jahangiri S, Thomas J. Prodrugs of imidazotriazine and pyrrolotriazine C-nucleosides can increase anti-HCV activity and enhance nucleotide triphosphate concentrations in vitro. Bioorg Med Chem Lett. 2015;25(4):869–873. doi: 10.1016/j.bmcl.2014.12.069. PubMed DOI
Wang H, Xu Y, Zhou X. Docetaxel-loaded chitosan microspheres as a lung targeted drug delivery system: in vitro and in vivo evaluation. Int J Mol Sci. 2014;15(3):3519–3532. doi: 10.3390/ijms15033519. PubMed DOI PMC
Wang Q, Liu P, Liu P, Gong T, Li S, Duan Y, Zhang Z (2014b) Preparation, blood coagulation and cell compatibility evaluation of chitosan-graft-polylactide copolymers. Biomed Mater 9(1):015007 PubMed
Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359(5):492–507. doi: 10.1056/NEJMra0708126. PubMed DOI
Wheelhouse RT, Stevens MF. Decomposition of the antitumour drug temozolomide in deuteriated phosphate buffer: methyl group transfer is accompanied by deuterium exchange. J Chem Soc Chem Comm. 1993;15:1177–1178. doi: 10.1039/c39930001177. DOI
Win KY, Feng SS. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26(15):2713–2722. doi: 10.1016/j.biomaterials.2004.07.050. PubMed DOI
Xu Y, Shen M, Li Y, Sun Y, Teng Y, Wang Y, Duan Y. The synergic antitumor effects of paclitaxel and temozolomide co-loaded in mPEG-PLGA nanoparticles on glioblastoma cells. Oncotarget. 2015;7:15. PubMed PMC
Xu Y, Shen M, Sun Y, Gao P, Duan Y (2016) Nano composite thermo-sensitive gel for paclitaxel and temozolomide co-delivery to glioblastoma cells. J Nanosci Nanotechnol 16(12):12288-12298 PubMed
You J, Li W, Yu C, Zhao C, Jin L, Zhou Y, Wang O. Amphiphilically modified chitosan cationic nanoparticles for drug delivery. JNR. 2013;15(12):1–10.
Zhang H, Gao S. Temozolomide/PLGA microparticles and antitumor activity against glioma C6 cancer cells in vitro. Int J Pharm. 2007;329(1):122–128. doi: 10.1016/j.ijpharm.2006.08.027. PubMed DOI
Zhu Y, Liao L. Applications of nanoparticles for anticancer drug delivery: a review. JNN. 2015;15(7):4753–4773. doi: 10.1166/jnn.2015.10298. PubMed DOI