Encapsulation
Dotaz
Zobrazit nápovědu
There is a growing demand for efficient medical therapies without undesired side effects that limit their application. Targeted therapies such as deliveries of pharmacologically active compounds to a specific site of action in the human body are still a big challenge. Encapsulation is an effective tool for targeted deliveries of drugs and sensitive compounds. It has been exploited as a technique that can manage the required distribution, action and metabolism of encapsulated agents. Food supplements or functional foods containing encapsulated probiotics, vitamins, minerals or extracts are often part of therapies and currently also a consumption trend. For effective encapsulation, optimal manufacturing has to be ensured. Thus, there is a trend to develop new (or modify existing) encapsulation methods. The most-used encapsulation approaches are based on barriers made from (bio)polymers, liposomes, multiple emulsions, etc. In this paper, recent advances in the use of encapsulation in the fields of medicine, food supplements and functional foods are highlighted, with emphasis on its benefits within targeted and supportive treatments. We have focused on a comprehensive overview of encapsulation options in the field of medicine and functional preparations that complement them with their positive effects on human health.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Bacterial microcompartments (BMCs) are prokaryotic organelles consisting of a protein shell and an encapsulated enzymatic core. BMCs are involved in several biochemical processes, such as choline, glycerol and ethanolamine degradation and carbon fixation. Since non-native enzymes can also be encapsulated in BMCs, an improved understanding of BMC shell assembly and encapsulation processes could be useful for synthetic biology applications. Here we report the isolation and recombinant expression of BMC structural genes from the Klebsiella pneumoniae GRM2 locus, the investigation of mechanisms behind encapsulation of the core enzymes, and the characterization of shell particles by cryo-EM. We conclude that the enzymatic core is encapsulated in a hierarchical manner and that the CutC choline lyase may play a secondary role as an adaptor protein. We also present a cryo-EM structure of a pT = 4 quasi-symmetric icosahedral shell particle at 3.3 Å resolution, and demonstrate variability among the minor shell forms.
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- cholin metabolismus MeSH
- elektronová kryomikroskopie MeSH
- genetické lokusy MeSH
- Klebsiella pneumoniae cytologie enzymologie genetika ultrastruktura MeSH
- lyasy genetika metabolismus MeSH
- organely enzymologie ultrastruktura MeSH
- rekombinantní proteiny genetika metabolismus MeSH
- syntetická biologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Stilbenes in food and medicinal plants have been described as potent antiphlogistic and antioxidant compounds, and therefore, they present an interesting potential for the development of dietary supplements. Among them, macasiamenene F (MF) has recently been shown to be an effective anti-inflammatory and cytoprotective agent that dampens peripheral and CNS inflammation in vitro. Nevertheless, this promising molecule, like other stilbenes and a large percentage of drugs under development, faces poor water solubility, which results in trickier in vivo administration and low bioavailability. With the aim of improving MF solubility and developing a form optimized for in vivo administration, eight types of conventional liposomal nanocarriers and one type of PEGylated liposomes were formulated and characterized. In order to select the appropriate form of MF encapsulation, the safety of MF liposomal formulations was evaluated on THP-1 and THP-1-XBlue-MD2-CD14 monocytes, BV-2 microglia, and primary cortical neurons in culture. Furthermore, the cellular uptake of liposomes and the effect of encapsulation on MF anti-inflammatory effectiveness were evaluated on THP-1-XBlue-MD2-CD14 monocytes and BV-2 microglia. MF (5 mol %) encapsulated in PEGylated liposomes with an average size of 160 nm and polydispersity index of 0.122 was stable, safe, and the most promising form of MF encapsulation keeping its cytoprotective and anti-inflammatory properties.
- Publikační typ
- časopisecké články MeSH
Encapsulation is a well-established method of biomaterial protection, controlled release, and efficient delivery. Here we evaluated encapsulation of monoclonal antibody M75 directed to tumor biomarker carbonic anhydrase IX (CA IX) into alginate microbeads (SA-beads) or microcapsules made of sodium alginate, cellulose sulfate, and poly(methylene-co-guanidine) (PMCG). M75 antibody release was quantified using ELISA and its binding properties were assessed by immunodetection methods. SA-beads showed rapid M75 antibody release in the first hour, followed by steady release during the whole experiment of 7 days. In contrast, the M75 release from PMCG capsules was gradual, reaching the maximum concentration on the 7th day. The release was more efficient at pH 6.8 compared to pH 7.4. The released antibody could recognize CA IX, and target the CA IX-positive cells in 3D spheroids. In conclusion, SA-beads and PMCG microcapsules can be considered as promising antibody reservoirs for targeting of cancer cells.
- MeSH
- antigeny nádorové imunologie metabolismus MeSH
- buněčné sféroidy metabolismus MeSH
- karboanhydrasa IX imunologie metabolismus MeSH
- koncentrace vodíkových iontů MeSH
- lékové transportní systémy metody MeSH
- lidé MeSH
- mikrosféry * MeSH
- monoklonální protilátky aplikace a dávkování imunologie farmakokinetika MeSH
- nádorové biomarkery imunologie metabolismus MeSH
- nádorové buňky kultivované MeSH
- nádory metabolismus patologie MeSH
- PEG-DMA hydrogel * MeSH
- protinádorové látky aplikace a dávkování MeSH
- uvolňování léčiv MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
To provide the bilateral advantages of emulsions and hydrogels, a facile approach was used to fabricate nanoemulsions filled hydrogel beads through combining the method of self-emulsification and sodium alginate (SA) ionic gelation. The encapsulation and release behavior of curcumin (Cur) were further investigated. The results indicated that Cur packaged nanoemulsions were with the size of 24.26 ± 0.22 nm. The nanoemulsions filled SA hydrogel beads were spherical shell with the diameter of 0.46 ± 0.02 mm. For Cur, the EE and LC of emulsion filled SA hydrogel beads were 99.15 ± 0.85% and 7.25 ± 3.16 mg/g respectively. The release behavior could be regulated by external pH condition. The release behavior at pH 9.0 displayed a higher release rate than that at pH 7.0. Cur released behavior well followed the Hixcon-Crowell model which indicated that Cur was released in a diffusion-controlled model. Comparatively investigation of microstructure using field emission scanning electron microscope (FE-SEM) further investigates the corrosion behavior of SA gel beads during Cur release. The worth-while endeavor provided a practical combined technique of emulsions and ionic gelation to fabricate hybrid hydrogel beads that have potential in delivery system for hydrophobic composition.
In this work, novel amorphous solid dispersions based on yeast glucan particles were produced. Yeast glucan particles are hollow and porous, and they are mainly composed of amorphous polysaccharides. We hypothesized that these particles are suitable candidates for the amorphization of drugs with low water solubility. Model drugs ibuprofen and curcumin were successfully encapsulated in glucan particles by spray drying. Different spray-drying parameters were tested to evaluate the influence of atomizing droplet size and initial solid content on encapsulation efficiency. It was shown that higher solid content and, more significantly, larger droplet sizes lead to higher encapsulation efficiencies. The encapsulation efficiency of ibuprofen (10 wt%) into glucan particles was considerably improved from 41.3 ± 0.5% to 64.3 ± 0.2% by increasing initial solid content and droplet size with the two-fluid nozzle. The spray drying process was further optimized by using the ultrasonic nozzle and it was possible to achieve complete encapsulation of ibuprofen and curcumin without any precipitation of the active compound outside of the glucan particles. Overall, it was possible to produce completely amorphous composites with outstanding wettability and dispersion properties, and with significantly faster dissolution rates when compared to the micronized crude drug.
- MeSH
- aerosoly MeSH
- beta-glukany chemie izolace a purifikace MeSH
- ibuprofen chemie MeSH
- kinetika MeSH
- kurkumin chemie MeSH
- nosiče léků * MeSH
- příprava léků MeSH
- rozpustnost MeSH
- Saccharomyces cerevisiae chemie MeSH
- ultrazvuk * MeSH
- uvolňování léčiv MeSH
- velikost částic MeSH
- vysoušení * MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: There is a general requirement to determine and correlate water content to viability for the standardization of conservation protocols to facilitate effective cryostorage of plant germplasm. OBJECTIVE: This study examined water content as a critical factor to optimize the cryostorage of Allium sativum. MATERIALS AND METHODS: Stem discs were excised from post-harvest, stored bulbs prior to cryopreservation by encapsulation-dehydration and water content was determined gravimetrically. RESULTS: Survival of cryopreserved stem discs was 42.5 %, with 22.5 % exhibiting shoot regrowth following 6 h desiccation. Gravimetric data demonstrated a correlation between water content corresponding with survival / regrowth from desiccated, cryopreserved stem discs. For encapsulated stem discs a 25 % residual moisture and corresponding water content of 0.36 g H2O g(-1) d.wt correlated with maximal survival following ~6.5 h of desiccation. CONCLUSION: The data concurs with the literature suggesting the formation of a stable vitrified state and a 'window' for optimal survival and regrowth that is between 6 - 10 h desiccation. Further studies using differential scanning calorimetry (DSC) are suggested to substantiate these findings.
Introduction: The present study reports on examination of the effects of encapsulating the tyrosine kinase inhibitors (TKIs) vandetanib and lenvatinib into a biomacromolecular ferritin-based delivery system. Methods: The encapsulation of TKIs was performed via two strategies: i) using an active reversible pH-dependent reassembly of ferritin´s quaternary structure and ii) passive loading of hydrophobic TKIs through the hydrophobic channels at the junctions of ferritin subunits. After encapsulation, ferritins were surface-functionalized with folic acid promoting active-targeting capabilities. Results: The physico-chemical and nanomechanical analyses revealed that despite the comparable encapsulation efficiencies of both protocols, the active loading affects stability and rigidity of ferritins, plausibly due to their imperfect reassembly. Biological experiments with hormone-responsive breast cancer cells (T47-D and MCF-7) confirmed the cytotoxicity of encapsulated and folate-targeted TKIs to folate-receptor positive cancer cells, but only limited cytotoxic effects to healthy breast epithelium. Importantly, the long-term cytotoxic experiments revealed that compared to the pH-dependent encapsulation, the passively-loaded TKIs exert markedly higher anticancer activity, most likely due to undesired influence of harsh acidic environment used for the pH-dependent encapsulation on the TKIs' structural and functional properties. Conclusion: Since the passive loading does not require a reassembly step for which acids are needed, the presented investigation serves as a solid basis for future studies focused on encapsulation of small hydrophobic molecules.
- MeSH
- biokompatibilní materiály chemie MeSH
- buněčná smrt účinky léků MeSH
- buněčné klony MeSH
- buněčné linie MeSH
- chinazoliny chemie farmakologie MeSH
- chinoliny chemie farmakologie MeSH
- difuze MeSH
- fenylmočovinové sloučeniny chemie farmakologie MeSH
- ferritiny chemie MeSH
- inhibitory proteinkinas farmakologie MeSH
- koncentrace vodíkových iontů MeSH
- koně MeSH
- kyselina listová chemie MeSH
- lékové transportní systémy * MeSH
- lidé MeSH
- nosiče léků chemie MeSH
- piperidiny chemie farmakologie MeSH
- pohyb buněk účinky léků MeSH
- povrchové vlastnosti MeSH
- protinádorové látky farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The development of encapsulation technologies has played an important role in improving cryopreservation outcomes for many cell and tissue types over the past 20 years. Alginate encapsulation cryopreservation (AECryo) has been incorporated into a range of applications in biotechnology, species conservation and clinical therapies, using cells from many different phyla, including higher plants, animal and human cells. This review describes the background to the origins of AECryo, the development of AECryo in higher plant tissues, broadening to current applications in algal conservation, the roles for AECryo in preserving phytodiversity, fungal species and in animal and human cells. OBJECTIVE: The main aims are to provide information resources on AECryo in different areas of biology and to stimulate new ideas for wider applications and future improvement. The translation of this useful biopreservation strategy into new opportunities for cell cryopreservation and storage at non-freezing temperatures are also discussed.
- MeSH
- algináty farmakologie MeSH
- houby účinky léků fyziologie MeSH
- kryoprezervace metody MeSH
- kyselina glukuronová farmakologie MeSH
- kyseliny hexuronové farmakologie MeSH
- lidé MeSH
- PEG-DMA hydrogel farmakologie MeSH
- rostliny účinky léků MeSH
- zmrazování * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH