Potential of Pichia pastoris for the production of industrial penicillin G acylase
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
28281229
DOI
10.1007/s12223-017-0512-0
PII: 10.1007/s12223-017-0512-0
Knihovny.cz E-resources
- MeSH
- Achromobacter genetics metabolism MeSH
- Bioreactors microbiology MeSH
- Gene Expression MeSH
- Genetic Vectors MeSH
- Gene Dosage MeSH
- Cloning, Molecular MeSH
- Codon genetics MeSH
- Penicillin Amidase genetics metabolism MeSH
- Pichia genetics metabolism MeSH
- Promoter Regions, Genetic MeSH
- Industrial Microbiology methods MeSH
- Recombinant Proteins genetics metabolism MeSH
- Transformation, Genetic MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Codon MeSH
- Penicillin Amidase MeSH
- Recombinant Proteins MeSH
This study deals with the potential of Pichia pastoris X-33 for the production of penicillin G acylase (PGAA) from Achromobacter sp. CCM 4824. Synthetic gene matching the codon usage of P. pastoris was designed for intracellular and secretion-based production strategies and cloned into vectors pPICZ and pPICZα under the control of AOX1 promoter. The simple method was developed to screen Pichia transformants with the intracellularly produced enzyme. The positive correlation between acylase production and pga gene dosage for both expression systems was demonstrated in small scale experiments. In fed-batch bioreactor cultures of X-33/PENS2, an extracellular expression system, total PGAA expressed from five copies reached 14,880 U/L of an active enzyme after 142 h; however, 60% of this amount retained in the cytosol. The maximum PGAA production of 31,000 U/L was achieved intracellularly from nine integrated gene copies of X-33/PINS2 after 90 h under methanol induction. The results indicate that in both expression systems the production level of PGAA is similar but there is a limitation in secretion efficiency.
Fermenta Biotech Ltd Thane India
Institute of Microbiology of the CAS v v i Vídeňská 1083 14220 Prague 4 Czech Republic
See more in PubMed
PLoS One. 2014 May 07;9(5):e96974 PubMed
Biotechnol J. 2010 Apr;5(4):413-20 PubMed
Yeast. 2005 Mar;22(4):249-70 PubMed
Biotechnol Bioeng. 2004 Feb 20;85(4):367-75 PubMed
Biotechnol Adv. 2013 Dec;31(8):1319-32 PubMed
Biochim Biophys Acta. 1972 Jul 13;276(1):250-6 PubMed
Microb Cell Fact. 2006 Apr 06;5:17 PubMed
Protein Expr Purif. 2001 Feb;21(1):71-80 PubMed
Microb Cell Fact. 2005 Nov 10;4:31 PubMed
FEMS Yeast Res. 2002 Jan;1(4):271-7 PubMed
Biotechnol Rep (Amst). 2015 Mar 26;6:112-118 PubMed
Appl Microbiol Biotechnol. 2011 Feb;89(4):1127-35 PubMed
Microb Cell Fact. 2005 Dec 07;4:33 PubMed
Biotechnol Adv. 2015 Nov 1;33(6 Pt 2):1177-93 PubMed
Nucleic Acids Res. 1986 Jul 25;14(14):5713-27 PubMed
Microb Cell Fact. 2010 Apr 26;9:24 PubMed
Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai). 2003 May;35(5):416-22 PubMed
Microb Cell Fact. 2010 Sep 13;9:68 PubMed
BMC Biotechnol. 2010 Feb 03;10:7 PubMed
BMC Biotechnol. 2011 May 10;11:47 PubMed
Appl Microbiol Biotechnol. 2015 Apr;99(7):2925-38 PubMed
Microb Cell Fact. 2009 Feb 10;8:13 PubMed
Appl Environ Microbiol. 2004 May;70(5):2764-70 PubMed
Appl Microbiol Biotechnol. 2014 Apr;98(7):2867-79 PubMed
Front Microbiol. 2015 Oct 19;6:1140 PubMed
Protein Expr Purif. 2001 Feb;21(1):60-4 PubMed
Methods Mol Biol. 2007;389:65-76 PubMed
Biotechnol Bioeng. 2001 Oct 5;75(1):46-52 PubMed
J Appl Microbiol. 2000 Jul;89(1):152-7 PubMed
Eur J Biochem. 1990 Aug 28;192(1):143-51 PubMed
J Biotechnol. 2009 Jul 15;142(3-4):250-8 PubMed
PLoS One. 2013;8(3):e58393 PubMed
Nat Biotechnol. 2004 Nov;22(11):1399-408 PubMed
Appl Microbiol Biotechnol. 2014 Jun;98(12):5301-17 PubMed
Biotechnol Bioeng. 2006 Feb 5;93(2):344-54 PubMed
Appl Microbiol Biotechnol. 2014 Feb;98(3):1195-203 PubMed
Microb Cell Fact. 2006 Nov 28;5:36 PubMed
Production and secretion dynamics of prokaryotic Penicillin G acylase in Pichia pastoris