The redox environment triggers conformational changes and aggregation of hIAPP in Type II Diabetes

. 2017 Mar 13 ; 7 () : 44041. [epub] 20170313

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28287098

Grantová podpora
P 28854 Austrian Science Fund FWF - Austria

Type II diabetes (T2D) is characterized by diminished insulin production and resistance of cells to insulin. Among others, endoplasmic reticulum (ER) stress is a principal factor contributing to T2D and induces a shift towards a more reducing cellular environment. At the same time, peripheral insulin resistance triggers the over-production of regulatory hormones such as insulin and human islet amyloid polypeptide (hIAPP). We show that the differential aggregation of reduced and oxidized hIAPP assists to maintain the redox equilibrium by restoring redox equivalents. Aggregation thus induces redox balancing which can assist initially to counteract ER stress. Failure of the protein degradation machinery might finally result in β-cell disruption and cell death. We further present a structural characterization of hIAPP in solution, demonstrating that the N-terminus of the oxidized peptide has a high propensity to form an α-helical structure which is lacking in the reduced state of hIAPP. In healthy cells, this residual structure prevents the conversion into amyloidogenic aggregates.

Zobrazit více v PubMed

Amos A. F., McCarty D. J. & Zimmet P. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabetic Med. 14 Suppl 5, S1–S85 (1997). PubMed

Donath M. Y. & Shoelson S. E. Type 2 diabetes as an inflammatory disease. Nature Rev. Immunol. 11, 98–107 (2011). PubMed

Paulsson J. F., Andersson A., Westermark P. & Westermark G. T. Intracellular amyloid-like deposits contain unprocessed pro-islet amyloid polypeptide (proIAPP) in beta cells of transgenic mice overexpressing the gene for human IAPP and transplanted human islets. Diabetologia 49, 1237–1246 (2006). PubMed

Cooper G. J. S. et al.. Purification and Characterization of a Peptide from Amyloid-rich Pancreases of Type-2-Diabetic Patients. Proc. Natl Acad. Sci. USA 84, 8628–8632 (1987). PubMed PMC

Bram Y. et al.. Apoptosis induced by islet amyloid polypeptide soluble oligomers is neutralized by diabetes-associated specific antibodies. Sci. Rep. 4 (2014). PubMed PMC

Hutton J. C. The Insulin Secretory Granule. Diabetologia 32, 271–281 (1989). PubMed

Westermark P., Li Z. C., Westermark G. T., Leckstrom A. & Steiner D. F. Effects of beta cell granule components on human islet amyloid polypeptide fibril formation. FEBS Lett. 379, 203–206 (1996). PubMed

Wiltzius J. J. W., Sievers S. A., Sawaya M. R. & Eisenberg D. Atomic structures of IAPP (amylin) fusions suggest a mechanism for fibrillation and the role of insulin in the process. Prot. Sci. 18, 1521–1530 (2009). PubMed PMC

Jha S. et al.. pH Dependence of Amylin Fibrillization. Biochemistry 53, 300–310 (2014). PubMed

Braakman I., Helenius J. & Helenius A. Manipulating Disulphide Bond Formation and Protein Folding in the Endoplasmic Reticulum. EMBO J. 11, 1717–1722 (1992). PubMed PMC

Cuozzo J. W. & Kaiser C. A. Competition between glutathione and protein thiols for disulphide-bond formation. Nature Cell Biol. 1, 130–135 (1999). PubMed

Nardai G., Korcsmaros T., Papp E. & Csermely P. Reduction of the endoplasmic reticulum accompanies the oxidative damage of diabetes mellitus (Reprinted from Thiol Metabolism and Redox Regulation of Cellular Functions). Biofactors 17, 259–267 (2003). PubMed

Schafer F. Q. & Buettner G. R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 30, 1191–1212 (2001). PubMed

Birk J. et al.. Endoplasmic reticulum: reduced and oxidized glutathione revisited. J. Cell Sci. 126, 1604–1617 (2013). PubMed

Paulsson J. F. & Westermark G. T. Aberrant processing of human proislet amyloid polypeptide results in increased amyloid formation. Diabetes 54, 2117–2125 (2005). PubMed

Zimmermann J., Kuhne R., Sylvester M. & Freund C. Redox-regulated conformational changes in an SH3 domain. Biochemistry 46, 6971–6977 (2007). PubMed

Rodriguez Camargo D. C. et al.. Cloning, expression and purification of the human Islet Amyloid Polypeptide (hIAPP) from Escherichia coli. Protein Expr. Purif. 106, 49–56 (2015). PubMed

Grzesiek S. & Bax A. An efficient experiment for sequential backbone assignment of medium-sized isotopically enriched proteins. Journal of Magnetic Resonance J. Magn. Reson. 99, 201–207 (1992).

Nanga R. P. R., Brender J. R., Vivekanandan S. & Ramamoorthy A. Structure and membrane orientation of IAPP in its natively amidated form at physiological pH in a membrane environment. Biochim. Biophys. Acta 1808, 2337–2342 (2011). PubMed PMC

Abedini A. & Raleigh D. P. The role of His-18 in amyloid formation by human islet amyloid polypeptide. Biochemistry 44, 16284–16291 (2005). PubMed

Guntert P. Automated NMR structure calculation with CYANA. Meth. Mol. Biol. 278, 353–78 (2004). PubMed

Chiti F. & Dobson C. M. Amyloid formation by globular proteins under native conditions. Nature Chemical Biology 5, 15–22 (2009). PubMed

Kayed R. et al.. Conformational transitions of islet amyloid polypeptide (IAPP) in amyloid formation in vitro. J. Mol. Biol. 287, 781–796 (1999). PubMed

Williamson J. A. & Miranker A. D. Direct detection of transient a-helical states in islet amyloid polypeptide. Protein Science 16, 110–117 (2007). PubMed PMC

Patil S. M., Xu S. H., Sheftic S. R. & Alexandrescu A. T. Dynamic alpha-Helix Structure of Micelle-bound Human Amylin. J. Biol. Chem. 284, 11982–11991 (2009). PubMed PMC

Williamson J. A., Loria J. P. & Miranker A. D. Helix Stabilization Precedes Aqueous and Bilayer-Catalyzed Fiber Formation in Islet Amyloid Polypeptide. J. Mol. Biol. 393, 383–396 (2009). PubMed PMC

Luca S., Yau W.-M., Leapman R. D. & Tycko R. Peptide Conformation and Supramolecular Organization in Amylin Fibrils: Constraints from Solid-State NMR. Biochemistry 46, 13505–13522 (2007). PubMed PMC

Weirich F. et al.. Structural Characterization of Fibrils from Recombinant Human Islet Amyloid Polypeptide by Solid-State NMR: The Central FGAILS Segment Is Part of the β-Sheet Core. PLoS One 11, e0161243 (2016). PubMed PMC

Koo B. W. & Miranker A. D. Contribution of the intrinsic disulfide to the assembly mechanism of islet amyloid. Prot. Sci. 14, 231–239 (2005). PubMed PMC

Padrick S. B. & Miranker A. D. Islet amyloid: Phase partitioning and secondary nucleation are central to the mechanism of fibrillogenesis. Biochemistry 41, 4694–4703 (2002). PubMed

Obrien T. D., Westermark P. & Johnson K. H. Islet Amyloid Polypeptide and Insulin-Secretion from Isolated Perfused Pancreas of Fed, Fasted, Glucose-treated and Dexamethasone-treated Rats. Diabetes 40, 1701–1706 (1991). PubMed

Xu C. Y., Bailly-Maitre B. & Reed J. C. Endoplasmic reticulum stress: cell life and death decisions. J. Clin. Invest. 115, 2656–2664 (2005). PubMed PMC

Walter P. & Ron D. The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation. Science 334, 1081–1086 (2011). PubMed

Ozcan U. et al.. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457–461 (2004). PubMed

Butler A. E. et al.. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52, 102–110 (2003). PubMed

Westermark P., Andersson A. & Westermark G. T. Islet Amyloid Polypeptide, Islet Amyloid and Diabetes Mellitus. Physiol. Rev. 91, 795–826 (2011). PubMed

Hutton J. C. Secretory Granules. Experientia 40, 1091–1098 (1984). PubMed

Clark A. & Moffitt J. Pancreatic Islet Amyloid and Diabetes. In Protein Misfolding, Aggregation, and Conformational Diseases. Part B: Molecular Mechanisms of Conformational Diseases, vol. 6 (eds Uversky V. N. & Fink A. L.) 199–216 (Springer, New York, 2007).

Rivera J. F. et al.. Human-IAPP disrupts the autophagy/lysosomal pathway in pancreatic beta-cells: protective role of p62-positive cytoplasmic inclusions. Cell Death Diff. 18, 415–426 (2011). PubMed PMC

Morita S. et al.. Autophagy protects against human islet amyloid polypeptide-associated apoptosis. J. Diabetes Investig. 2, 48–55 (2011). PubMed PMC

Lee M. S. Role of islet beta cell autophagy in the pathogenesis of diabetes. Trends Endocrinol. Metabol. 25, 620–627 (2014). PubMed

Huang C. J. et al.. Induction of endoplasmic reticulum stress-induced beta-cell apoptosis and accumulation of polyubiquitinated proteins by human islet amyloid polypeptide. Am. J. Physiol. Endocrinol. Metab. 293, E1656–E1662 (2007). PubMed

Otoda T. et al.. Proteasome Dysfunction Mediates Obesity-Induced Endoplasmic Reticulum Stress and Insulin Resistance in the Liver. Diabetes 62, 811–824 (2013). PubMed PMC

Costes S. et al.. Beta-Cell Dysfunctional ERAD/Ubiquitin/Proteasome System in Type 2 Diabetes Mediated by Islet Amyloid Polypeptide-Induced UCH-L1 Deficiency. Diabetes 60, 227–238 (2011). PubMed PMC

Rivera J. F., Costes S., Gurlo T., Glabe C. G. & Butler P. C. Autophagy defends pancreatic beta cells from human islet amyloid polypeptide-induced toxicity. J. Clin. Invest. 124, 3489–3500 (2014). PubMed PMC

Chien V. et al.. The chaperone proteins HSP70, HSP40/DnaJ and GRP78/BiP suppress misfolding and formation of beta-sheet-containing aggregates by human amylin: a potential role for defective chaperone biology in Type 2 diabetes. Biochem. J. 432, 113–121 (2010). PubMed

Mainz A. et al.. The Chaperone αB-Crystallin Deploys Different Interfaces to Capture an Amorphous and an Amyloid Client. Nature Struct. Mol. Biol. 22, 898–905 (2015). PubMed

Nardai G. et al.. Diabetic changes in the redox status of the microsomal protein folding machinery. Biochem. Biophys. Res. Comm. 334, 787–795 (2005). PubMed

Mulder H., Ahren B. & Sundler F. Islet amyloid polypeptide (amylin) and insulin are differentially expressed in chronic diabetes induced by streptozotocin in rats. Diabetologia 39, 649–657 (1996). PubMed

Franko A. et al.. Bezafibrate improves insulin sensitivity and metabolic flexibility in STZ-treated diabetic mice. Diabetes 65, 2540–2552 (2016). PubMed

Sattler M., Schleucher J. & Griesinger C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. NMR Spect. 34, 93–158 (1999).

Goddard T. D. & Kneller D. G. SPARKY 3. (University of California, San Francisco, 1997).

Delaglio F. et al.. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995). PubMed

Vranken W. F. et al.. The CCPN Data Model for NMR Spectroscopy: Development of a Software Pipeline. Proteins 59, 687–696 (2005). PubMed

Cornilescu G., Delaglio F. & Bax A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999). PubMed

Shen Y., Delaglio F., Cornilescu G. & Bax A. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR 44, 213–223 (2009). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...