Disease-Specific Regions Outperform Whole-Brain Approaches in Identifying Progressive Supranuclear Palsy: A Multicentric MRI Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28326008
PubMed Central
PMC5339275
DOI
10.3389/fnins.2017.00100
Knihovny.cz E-zdroje
- Klíčová slova
- atypical parkinsonism, magnetic resonance imaging, progressive supranuclear palsy, support vector machine classification, voxel-based morphometry,
- Publikační typ
- časopisecké články MeSH
To identify progressive supranuclear palsy (PSP), we combined voxel-based morphometry (VBM) and support vector machine (SVM) classification using disease-specific features in multicentric magnetic resonance imaging (MRI) data. Structural brain differences were investigated at four centers between 20 patients with PSP and 20 age-matched healthy controls with T1-weighted MRI at 3T. To pave the way for future application in personalized medicine, we applied SVM classification to identify PSP on an individual level besides group analyses based on VBM. We found a major decline in gray matter density in the brainstem, insula, and striatum, and also in frontomedian regions, which is in line with current literature. Moreover, SVM classification yielded high accuracy rates above 80% for disease identification in imaging data. Focusing analyses on disease-specific regions-of-interest (ROI) led to higher accuracy rates compared to a whole-brain approach. Using a polynomial kernel (instead of a linear kernel) led to an increased sensitivity and a higher specificity of disease detection. Our study supports the application of MRI for individual diagnosis of PSP, if combined with SVM approaches. We demonstrate that SVM classification provides high accuracy rates in multicentric data-a prerequisite for potential application in diagnostic routine.
Department of Neurology Saarland University Homburg Homburg Germany
Department of Neurology University of Ulm Ulm Germany
Institute for Clinical and Experimental Medicine Prague Czechia
Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
Zobrazit více v PubMed
Ashburner J., Friston K. J. (2005). Unified segmentation. Neuroimage 26, 839–851. 10.1016/j.neuroimage.2005.02.018 PubMed DOI
Belmokhtar N., Benamrane N. (2012). Classification of Alzheimer's Disease from 3 D structural MRI data. Int. J. Compt. Appl. 47, 40–44. 10.5120/7171-9798 DOI
Boxer A. L., Geschwind M. D., Belfor N., Gorno-Tempini M. L., Schauer G. F., Miller B. L., et al. . (2006). Patterns of brain atrophy that differentiate corticobasal degeneration syndrome from progressive supranuclear palsy. Arch. Neurol. 63, 81–86. 10.1001/archneur.63.1.81 PubMed DOI
Brenneis C., Seppi K., Schocke M., Benke T., Wenning G. K., Poewe W. (2004). Voxel based morphometry reveals a distinct pattern of frontal atrophy in progressive supranuclear palsy. J. Neurol. Neurosurg. Psychiatr. 75, 246–249. 10.1136/jnnp.2003.015297 PubMed DOI PMC
Chang C.-C., Lin C.-J. (2011). LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2:27 10.1145/1961189.1961199 DOI
Cordato N. J., Duggins A. J., Halliday G. M., Morris J. G., Pantelis C. (2005). Clinical deficits correlate with regional cerebral atrophy in progressive supranuclear palsy. Brain 128, 1259–1266. 10.1093/brain/awh508 PubMed DOI
Dukart J., Mueller K., Barthel H., Villringer A., Sabri O., Schroeter M. L., et al. . (2013). Meta-analysis based SVM classification enables accurate detection of Alzheimer's disease across different clinical centers using FDG-PET and MRI. Psychiatry Res. 212, 230–236. 10.1016/j.pscychresns.2012.04.007 PubMed DOI
Dukart J., Mueller K., Horstmann A., Barthel H., Möller H. E., Villringer A., et al. . (2011). Combined evaluation of FDG-PET and MRI improves detection and differentiation of dementia. PLoS ONE 6:e18111. 10.1371/journal.pone.0018111 PubMed DOI PMC
Focke N. K., Helms G., Scheewe S., Pantel P. M., Bachmann C. G., Dechent P., et al. . (2011). Individual voxel-based subtype prediction can differentiate progressive supranuclear palsy from idiopathic Parkinson syndrome and healthy controls. Hum. Brain Mapp. 32, 1905–1915. 10.1002/hbm.21161 PubMed DOI PMC
Ghosh B. C., Calder A. J., Peers P. V., Lawrence A. D., Acosta-Cabronero J., Pereira J. M., et al. . (2012). Social cognitive deficits and their neural correlates in progressive supranuclear palsy. Brain 135, 2089–2102. 10.1093/brain/aws128 PubMed DOI PMC
Huppertz H.-J., Möller L., Südmeyer M., Hilker R., Hattingen E., Egger K., et al. . (2016). Differentiation of neurodegenerative parkinsonian syndromes by volumetric magnetic resonance imaging analysis and support vector machine classification. Mov. Disord. 31, 1506–1517 10.1002/mds.26715 PubMed DOI
Keith-Rokosh J., Ang L. C. (2008). Progressive supranuclear palsy: a review of co-existing neurodegeneration. Can. J. Neurol. Sci. 35, 602–608. 10.1017/S0317167100009392 PubMed DOI
Messina D., Cerasa A., Condino F., Arabia G., Novellino F., Nicoletti G., et al. . (2011). Patterns of brain atrophy in Parkinson's disease, progressive supranuclear palsy and multiple system atrophy. Parkinsonism Relat. Disord. 17, 172–176. 10.1016/j.parkreldis.2010.12.010 PubMed DOI
Nichols T., Hayasaka S. (2003). Controlling the familywise error rate in functional neuroimaging: a comparative review. Stat. Methods Med. Res. 12, 419–446. 10.1191/0962280203sm341ra PubMed DOI
Padovani A., Borroni B., Brambati S. M., Agosti C., Broli M., Alonso R., et al. . (2006). Diffusion tensor imaging and voxel based morphometry study in early progressive supranuclear palsy. J. Neurol. Neurosurg. Psychiatr. 77, 457–463. 10.1136/jnnp.2005.075713 PubMed DOI PMC
Platt J. (1998). Sequential Minimal Optimization: a Fast algorithm for training support vector machines. CiteSeerX 10.1.1.43.4376.
Price S., Paviour D., Scahill R., Stevens J., Rossor M., Lees A., et al. . (2004). Voxel-based morphometry detects patterns of atrophy that help differentiate progressive supranuclear palsy and Parkinson's disease. Neuroimage 23, 663–669. 10.1016/j.neuroimage.2004.06.013 PubMed DOI
Salvatore C., Cerasa A., Castiglioni I., Gallivanone F., Augimeri A., Lopez M., et al. . (2014). Machine learning on brain MRI data for differential diagnosis of Parkinson's disease and Progressive Supranuclear Palsy. J. Neurosci. Methods 222, 230–237. 10.1016/j.jneumeth.2013.11.016 PubMed DOI
Schroeter M. L., Raczka K., Neumann J., von Cramon D. Y. (2008). Neural networks in frontotemporal dementia–a meta-analysis. Neurobiol. Aging 29, 418–426. 10.1016/j.neurobiolaging.2006.10.023 PubMed DOI
Schroeter M. L., Raczka K., Neumann J., Yves von Cramon D. (2007). Towards a nosology for frontotemporal lobar degenerations-a meta-analysis involving 267 subjects. Neuroimage 36, 497–510. 10.1016/j.neuroimage.2007.03.024 PubMed DOI
Schroeter M. L., Stein T., Maslowski N., Neumann J. (2009). Neural correlates of Alzheimer's disease and mild cognitive impairment: a systematic and quantitative meta-analysis involving 1351 patients. Neuroimage 47, 1196–1206. 10.1016/j.neuroimage.2009.05.037 PubMed DOI PMC
Shao N., Yang J., Li J., Shang H. F. (2014). Voxelwise meta-analysis of gray matter anomalies in progressive supranuclear palsy and Parkinson's disease using anatomic likelihood estimation. Front. Hum. Neurosci. 8:63. 10.3389/fnhum.2014.00063 PubMed DOI PMC
Shi H. C., Zhong J. G., Pan P. L., Xiao P. R., Shen Y., Wu L. J., et al. . (2013). Gray matter atrophy in progressive supranuclear palsy: meta-analysis of voxel-based morphometry studies. Neurol. Sci. 34, 1049–1055. 10.1007/s10072-013-1406-9 PubMed DOI
Williams D. R., Lees A. J. (2009). Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges. Lancet Neurol. 8, 270–279. 10.1016/S1474-4422(09)70042-0 PubMed DOI
Yu F., Barron D. S., Tantiwongkosi B., Fox P. (2015). Patterns of gray matter atrophy in atypical parkinsonism syndromes: a VBM meta-analysis. Brain Behav. 5:e00329. 10.1002/brb3.329 PubMed DOI PMC