Disentangling brain functional network remodeling in corticobasal syndrome - A multimodal MRI study
Language English Country Netherlands Media print-electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
R01 AG038791
NIA NIH HHS - United States
PubMed
31821953
PubMed Central
PMC6906725
DOI
10.1016/j.nicl.2019.102112
PII: S2213-1582(19)30459-0
Knihovny.cz E-resources
- Keywords
- Corticobasal syndrome, Imaging biomarkers, Magnetic resonance imaging, Resting-state functional connectivity, Support vector machine, Voxel-based morphometry,
- MeSH
- Connectome methods MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging * MeSH
- Cerebral Cortex diagnostic imaging pathology physiopathology MeSH
- Multimodal Imaging MeSH
- Basal Ganglia Diseases diagnostic imaging pathology physiopathology MeSH
- Nerve Net diagnostic imaging pathology physiopathology MeSH
- Neuroimaging methods MeSH
- Gray Matter diagnostic imaging pathology physiopathology MeSH
- Aged MeSH
- Support Vector Machine * MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
OBJECTIVE: The clinical diagnosis of corticobasal syndrome (CBS) represents a challenge for physicians and reliable diagnostic imaging biomarkers would support the diagnostic work-up. We aimed to investigate the neural signatures of CBS using multimodal T1-weighted and resting-state functional magnetic resonance imaging (MRI). METHODS: Nineteen patients with CBS (age 67.0 ± 6.0 years; mean±SD) and 19 matched controls (66.5 ± 6.0) were enrolled from the German Frontotemporal Lobar Degeneration Consortium. Changes in functional connectivity and structure were respectively assessed with eigenvector centrality mapping complemented by seed-based analysis and with voxel-based morphometry. In addition to mass-univariate statistics, multivariate support vector machine (SVM) classification tested the potential of multimodal MRI to differentiate patients and controls. External validity of SVM was assessed on independent CBS data from the 4RTNI database. RESULTS: A decrease in brain interconnectedness was observed in the right central operculum, middle temporal gyrus and posterior insula, while widespread connectivity increases were found in the anterior cingulum, medial superior-frontal gyrus and in the bilateral caudate nuclei. Severe and diffuse gray matter volume reduction, especially in the bilateral insula, putamen and thalamus, characterized CBS. SVM classification revealed that both connectivity (area under the curve 0.81) and structural abnormalities (0.80) distinguished CBS from controls, while their combination led to statistically non-significant improvement in discrimination power, questioning the additional value of functional connectivity over atrophy. SVM analyses based on structural MRI generalized moderately well to new data, which was decisively improved when guided by meta-analytically derived disease-specific regions-of-interest. CONCLUSIONS: Our data-driven results show impairment of functional connectivity and brain structure in CBS and explore their potential as imaging biomarkers.
Clinic for Neurology Saarland University Germany
Clinic for Psychiatry Psychosomatic medicine and Psychotherapy University Würzburg Germany
Department of Neurodegenerative Diseases and Geriatric Psychiatry University Bonn Germany
Department of Neurology Charles University 1st Faculty of Medicine Prague Czech Republic
Department of Neurology University of Ulm Germany
Department of Psychiatry and Psychotherapy Technical University of Munich Germany
Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
See more in PubMed
Albrecht F., Bisenius S., Schaack R.M., Neumann J., Schroeter M.L. Disentangling the neural correlates of corticobasal syndrome and corticobasal degeneration with systematic and quantitative ALE meta-analyses. NPJ Parkinson's Dis. 2017;3:12. PubMed PMC
Albrecht F., Mueller K., Ballarini T., Lampe L., Diehl-Schmid J., Fassbender K., Fliessbach K., Jahn H., Jech R., Kassubek J. Unraveling corticobasal syndrome and alien limb syndrome with structural brain imaging. Cortex. 2019;117:33–40. PubMed
Armstrong M.J., Litvan I., Lang A.E., Bak T.H., Bhatia K.P., Borroni B., Boxer A.L., Dickson D.W., Grossman M., Hallett M. Criteria for the diagnosis of corticobasal degeneration. Neurology. 2013;80:496–503. PubMed PMC
Ashburner J., Friston K.J. Voxel-based morphometry–the methods. Neuroimage. 2000;11:805–821. PubMed
Ashburner J., Friston K.J. Unified segmentation. Neuroimage. 2005;26:839–851. PubMed
Ballarini T., Mueller K., Albrecht F., Růžička F., Bezdicek O., Růžička E., Roth J., Vymazal J., Jech R., Schroeter M.L. Regional gray matter changes and age predict individual treatment response in Parkinson's disease. NeuroImage Clin. 2019;21 PubMed PMC
Bharti K., Bologna M., Upadhyay N., Piattella M.C., Suppa A., Petsas N., Giannì C., Tona F., Berardelli A., Pantano P. abnormal resting-state functional connectivity in progressive supranuclear palsy and corticobasal syndrome. Front. Neurol. 2017;8:248. PubMed PMC
Bisenius S., Mueller K., Diehl-Schmid J., Fassbender K., Grimmer T., Jessen F., Kassubek J., Kornhuber J., Landwehrmeyer B., Ludolph A. Predicting primary progressive aphasias with support vector machine approaches in structural MRI data. NeuroImage Clin. 2017;14:334–343. PubMed PMC
Boeve B.F. The multiple phenotypes of corticobasal syndrome and corticobasal degeneration: implications for further study. J. Mol. Neurosci. 2011;45:350. PubMed
Boeve B.F., Lang A.E., Litvan I. Corticobasal degeneration and its relationship to progressive supranuclear palsy and frontotemporal dementia. Ann. Neurol. 2003:54. PubMed
Brin S., Page L. The anatomy of a large-scale hypertextual WEB search engine. Comput. Netw. Isdn Syst. 1998;30:107–117.
Burrell J.R., Hodges J.R., Rowe J.B. Cognition in corticobasal syndrome and progressive Supranuclear palsy: a review. Mov. Disord. 2014;29:684–693. PubMed
Caminiti S., Alongi P., Majno L., Volonte M., Cerami C., Gianolli L., Comi G., Perani D. Evaluation of an optimized [18 F] fluoro‐deoxy‐glucose positron emission tomography voxel‐wise method to early support differential diagnosis in atypical Parkinsonian disorders. Eur. J. Neurol. 2017;24:687. PubMed
Casanova R., Srikanth R., Baer A., Laurienti P.J., Burdette J.H., Hayasaka S., Flowers L., Wood F., Maldjian J.A. Biological parametric mapping: a statistical toolbox for multimodality brain image analysis. Neuroimage. 2007;34:137–143. PubMed PMC
Chahine L.M., Rebeiz T., Rebeiz J.J., Grossman M., Gross R.G. Corticobasal syndrome: five new things. Neurol. Clin. Pract. 2014;4:304–312. PubMed PMC
Damoiseaux J.S., Rombouts S., Barkhof F., Scheltens P., Stam C.J., Smith S.M., Beckmann C.F. Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. 2006;103:13848–13853. PubMed PMC
DeLong E., DeLong D., Clarke-Pearson D. Comparing the areas under two or more correlated receiver operating characteristic curves. A nonparametric approach. Biometrics. 1988;44:837–845. PubMed
Dubois B., Feldman H.H., Jacova C., Cummings J.L., DeKosky S.T., Barberger-Gateau P., Delacourte A., Frisoni G., Fox N.C., Galasko D. Revising the definition of Alzheimer's disease: a new lexicon. Lancet Neurol. 2010;9:1118–1127. PubMed
Dukart J., Mueller K., Horstmann A., Barthel H., Möller H.E., Villringer A., Sabri O., Schroeter M.L. Combined evaluation of FDG-PET and MRI improves detection and differentiation of dementia. PLoS ONE. 2011;6:e18111. PubMed PMC
Dutt S., Binney R.J., Heuer H.W., Luong P., Attygalle S., Bhatt P., Marx G.A., Elofson J., Tartaglia M.C., Litvan I. Progression of brain atrophy in PSP and CBS over 6 months and 1 year. Neurology. 2016;87(19) PubMed PMC
Eckert T., Barnes A., Dhawan V., Frucht S., Gordon M.F., Feigin A.S., Eidelberg D. FDG PET in the differential diagnosis of Parkinsonian disorders. Neuroimage. 2005;26:912–921. PubMed
Eklund A., Nichols T.E., Knutsson H. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc. Natl. Acad. Sci. 2016;113:7900–7905. PubMed PMC
Filippi, M., Sarasso, E., Agosta, F., 2019. Resting-state functional mri in parkinsonian syndromes. 6, 104–117. PubMed PMC
Goelman G., Gordon N., Bonne O. Maximizing negative correlations in resting-state functional connectivity MRI by time-lag. PLoS One. 2014;9 PubMed PMC
Gorno-Tempini M.L., Hillis A.E., Weintraub S., Kertesz A., Mendez M., Cappa S.e., Ogar J., Rohrer J., Black S., Boeve B.F. Classification of primary progressive aphasia and its variants. Neurology. 2011;76:1006–1014. emsp14, al. PubMed PMC
Greicius M. Resting-state functional connectivity in neuropsychiatric disorders. Curr. Opin. Neurol. 2008;21:424–430. PubMed
Hillary, F.G., Roman, C.A., Venkatesan, U., Rajtmajer, S.M., Bajo, R., Castellanos, N.D.J.N., 2015. Hyperconnectivity is a fundamental response to neurological disruption. 29, 59. PubMed
Höglinger G.U., Respondek G., Stamelou M., Kurz C., Josephs K.A., Lang A.E., Mollenhauer B., Müller U., Nilsson C., Whitwell J.L., Arzberger T., Englund E., Gelpi E., Giese A., Irwin D.J., Meissner W.G., Pantelyat A., Rajput A., van Swieten J.C., Troakes C., Antonini A., Bhatia K.P., Bordelon Y., Compta Y., Corvol J.-.C., Colosimo C., Dickson D.W., Dodel R., Ferguson L., Grossman M., Kassubek J., Krismer F., Levin J., Lorenzl S., Morris H.R., Nestor P., Oertel W.H., Poewe W., Rabinovici G., Rowe J.B., Schellenberg G.D., Seppi K., van Eimeren T., Wenning G.K., Boxer A.L., Golbe L.I., Litvan I., Movement Disorder Society-endorsed P.S.P.S.G. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov. Disord. 2017;32:853–864. Official journal of the Movement Disorder Society. PubMed PMC
Jenkinson M., Beckmann C.F., Behrens T.E., Woolrich M.W., Smith S.M. Fsl. Neuroimage. 2012;62:782–790. PubMed
Kikuchi A., Okamura N., Hasegawa T., Harada R., Watanuki S., Funaki Y., Hiraoka K., Baba T., Sugeno N., Oshima R. In vivo visualization of tau deposits in corticobasal syndrome by 18 F-THK5351 PET. Neurology. 2016;87:2309–2316. PubMed PMC
Klöppel S., Stonnington C.M., Chu C., Draganski B., Scahill R.I., Rohrer J.D., Fox N.C., Jack Jr C.R., Ashburner J., Frackowiak R.S. Automatic classification of MR scans in Alzheimer's disease. Brain. 2008;131:681–689. PubMed PMC
Koikkalainen J., Rhodius-Meester H., Tolonen A., Barkhof F., Tijms B., Lemstra A.W., Tong T., Guerrero R., Schuh A., Ledig C. Differential diagnosis of neurodegenerative diseases using structural MRI data. NeuroImage Clin. 2016;11:435–449. PubMed PMC
Lee S.E., Rabinovici G.D., Mayo M.C., Wilson S.M., Seeley W.W., DeArmond S.J., Huang E.J., Trojanowski J.Q., Growdon M.E., Jang J.Y. Clinicopathological correlations in corticobasal degeneration. Ann. Neurol. 2011;70:327–340. PubMed PMC
Lohmann G., Margulies D.S., Horstmann A., Pleger B., Lepsien J., Goldhahn D., Schloegl H., Stumvoll M., Villringer A., Turner R. Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. PLoS One. 2010;5:e10232. PubMed PMC
Mathew R., Bak T.H., Hodges J.R. Diagnostic criteria for corticobasal syndrome: a comparative study. J. Neurol. Neurosurg. Psychiatry. 2011 jnnp-2011-300875. PubMed
McKhann G.M., Knopman D.S., Chertkow H., Hyman B.T., Jr, C.R. Jack, Kawas C.H., Klunk W.E., Koroshetz W.J., Manly J.J., Mayeux R. The diagnosis of dementia due to Alzheimer's disease: recommendations from the national institute on aging-Alzheimer's association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's Dement. 2011;7:263–269. PubMed PMC
Meyer S., Mueller K., Stuke K., Bisenius S., Diehl-Schmid J., Jessen F., Kassubek J., Kornhuber J., Ludolph A.C., Prudlo J. Predicting behavioral variant frontotemporal dementia with pattern classification in multi-center structural MRI data. NeuroImage Clin. 2017;14:656–662. PubMed PMC
Mueller K., Jech R., Bonnet C., Tintěra J., Hanuška J., Möller H.E., Fassbender K., Ludolph A., Kassubek J., Otto M. Disease-specific regions outperform whole-brain approaches in identifying progressive supranuclear palsy: a multicentric MRI study. Front. Neurosci. 2017;11:100. PubMed PMC
Murphy K., Birn R.M., Handwerker D.A., Jones T.B., Bandettini P.A. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage. 2009;44:893–905. PubMed PMC
Murray R., Neumann M., Forman M., Farmer J., Massimo L., Rice A., Miller B., Johnson J., Clark C., Hurtig H. Cognitive and motor assessment in autopsy-proven corticobasal degeneration. Neurology. 2007;68:1274–1283. PubMed
Noble S., Scheinost D., Constable R.T. A decade of test-retest reliability of functional connectivity: a systematic review and meta-analysis. Neuroimage. 2019;203 PubMed PMC
Parmera J.B., Rodriguez R.D., Neto, A. Studart, Nitrini R, Brucki S.M.D. Corticobasal syndrome: a diagnostic conundrum. Dement. Neuropsychol. 2016;10:267–275. PubMed PMC
Perron O. On the theory of matrices. Math. Ann. 1907;64:248–263.
Pievani M., Paternicò D., Benussi L., Binetti G., Orlandini A., Cobelli M., Magnaldi S., Ghidoni R., Frisoni G.B. Pattern of structural and functional brain abnormalities in asymptomatic granulin mutation carriers. Alzheimer's Dement. J. Alzheimer's Assoc. 2014;10:S354–S363. e351. PubMed
Power J.D., Barnes K.A., Snyder A.Z., Schlaggar B.L., Petersen S.E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage. 2012;59:2142–2154. PubMed PMC
Rakotomamonjy A., Bach F.R., Canu S., Grandvalet Y. SimpleMKL. J. Mach. Learn. Res. 2008;9:2491–2521.
Rebeiz J.J., Kolodny E.H., Richardson E.P. Corticodentatonigral degeneration with neuronal achromasia. Arch. Neurol. 1968;18:20–33. PubMed
Schrouff J., Rosa M.J., Rondina J.M., Marquand A.F., Chu C., Ashburner J., Phillips C., Richiardi J., Mourao-Miranda J. PRoNTo: pattern recognition for neuroimaging toolbox. Neuroinformatics. 2013;11:319–337. PubMed PMC
Seeley W.W., Crawford R.K., Zhou J., Miller B.L., Greicius M.D. Neurodegenerative diseases target large-scale human brain networks. Neuron. 2009;62:42–52. PubMed PMC
Smith R., Schöll M., Widner H., van Westen D., Svenningsson P., Hägerström D., Ohlsson T., Jögi J., Nilsson C., Hansson O. In vivo retention of 18 F-AV-1451 in corticobasal syndrome. Neurology. 2017;89:845–853. PubMed PMC
Upadhyay N., Suppa A., Piattella M.C., Giannì C., Bologna M., Stasio, F. Di, Petsas N., Tona F., Fabbrini G., Berardelli A. Functional disconnection of thalamic and cerebellar dentate nucleus networks in progressive supranuclear palsy and corticobasal syndrome. Parkinsonism Relat. Disord. 2017;39:52–57. PubMed
Warren J.D., Rohrer J.D., Schott J.M., Fox N.C., Hardy J., Rossor M.N. Molecular nexopathies: a new paradigm of neurodegenerative disease. Trends Neurosci. 2013;36:561–569. PubMed PMC
Whitwell J.L., Jack C., Boeve B.F., Parisi J.E., Ahlskog J., Drubach D., Senjem M., Knopman D.S., Petersen R.C., Dickson D.W. Imaging correlates of pathology in corticobasal syndrome. Neurology. 2010;75:1879–1887. PubMed PMC
Woo C.-.W., Chang L.J., Lindquist M.A., Wager T.D. Building better biomarkers: brain models in translational neuroimaging. Nat. Neurosci. 2017;20:365. PubMed PMC
Zhou J., Greicius M.D., Gennatas E.D., Growdon M.E., Jang J.Y., Rabinovici G.D., Kramer J.H., Weiner M., Miller B.L., Seeley W.W. Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease. Brain. 2010;133:1352–1367. PubMed PMC