Support vector machine
Dotaz
Zobrazit nápovědu
Imbalanced datasets are prominent in real-world problems. In such problems, the data samples in one class are significantly higher than in the other classes, even though the other classes might be more important. The standard classification algorithms may classify all the data into the majority class, and this is a significant drawback of most standard learning algorithms, so imbalanced datasets need to be handled carefully. One of the traditional algorithms, twin support vector machines (TSVM), performed well on balanced data classification but poorly on imbalanced datasets classification. In order to improve the TSVM algorithm's classification ability for imbalanced datasets, recently, driven by the universum twin support vector machine (UTSVM), a reduced universum twin support vector machine for class imbalance learning (RUTSVM) was proposed. The dual problem and finding classifiers involve matrix inverse computation, which is one of RUTSVM's key drawbacks. In this paper, we improve the RUTSVM and propose an improved reduced universum twin support vector machine for class imbalance learning (IRUTSVM). We offer alternative Lagrangian functions to tackle the primal problems of RUTSVM in the suggested IRUTSVM approach by inserting one of the terms in the objective function into the constraints. As a result, we obtain new dual formulation for each optimization problem so that we need not compute inverse matrices neither in the training process nor in finding the classifiers. Moreover, the smaller size of the rectangular kernel matrices is used to reduce the computational time. Extensive testing is carried out on a variety of synthetic and real-world imbalanced datasets, and the findings show that the IRUTSVM algorithm outperforms the TSVM, UTSVM, and RUTSVM algorithms in terms of generalization performance.
- MeSH
- algoritmy * MeSH
- support vector machine * MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Atherosclerosis leads to coronary artery disease (CAD) and myocardial infarction (MI), a major cause of morbidity and mortality worldwide. The computer-aided prognosis of atherosclerotic events with the electrocardiogram (ECG) derived heart rate variability (HRV) can be a robust method in the prognosis of atherosclerosis events. METHODS: A total of 70 male subjects aged 55 ± 5 years participated in the study. The lead-II ECG was recorded and sampled at 200 Hz. The tachogram was obtained from the ECG signal and used to extract twenty-five HRV features. The one-way Analysis of variance (ANOVA) test was performed to find the significant differences between the CAD, MI, and control subjects. Features were used in the training and testing of a two-class artificial neural network (ANN) and support vector machine (SVM). RESULTS: The obtained results revealed depressed HRV under atherosclerosis. Accuracy of 100% was obtained in classifying CAD and MI subjects from the controls using ANN. Accuracy was 99.6% with SVM, and in the classification of CAD from MI subjects using SVM and ANN, 99.3% and 99.0% accuracy was obtained respectively. CONCLUSIONS: Depressed HRV has been suggested to be a marker in the identification of atherosclerotic events. The good accuracy observed in classification between control, CAD, and MI subjects, revealed it to be a non-invasive cost-effective approach in the prognosis of atherosclerotic events.
Atrial fibrillation (AF) is a serious heart arrhythmia leading to a significant increase of the risk for occurrence of ischemic stroke. Clinically, the AF episode is recognized in an electrocardiogram. However, detection of asymptomatic AF, which requires a long-term monitoring, is more efficient when based on irregularity of beat-to-beat intervals estimated by the heart rate (HR) features. Automated classification of heartbeats into AF and non-AF by means of the Lagrangian Support Vector Machine has been proposed. The classifier input vector consisted of sixteen features, including four coefficients very sensitive to beat-to-beat heart changes, taken from the fetal heart rate analysis in perinatal medicine. Effectiveness of the proposed classifier has been verified on the MIT-BIH Atrial Fibrillation Database. Designing of the LSVM classifier using very large number of feature vectors requires extreme computational efforts. Therefore, an original approach has been proposed to determine a training set of the smallest possible size that still would guarantee a high quality of AF detection. It enables to obtain satisfactory results using only 1.39% of all heartbeats as the training data. Post-processing stage based on aggregation of classified heartbeats into AF episodes has been applied to provide more reliable information on patient risk. Results obtained during the testing phase showed the sensitivity of 98.94%, positive predictive value of 98.39%, and classification accuracy of 98.86%.
- MeSH
- algoritmy MeSH
- databáze faktografické MeSH
- diagnóza počítačová MeSH
- elektrokardiografie metody MeSH
- fibrilace síní diagnóza patofyziologie MeSH
- lidé MeSH
- počítačové zpracování signálu MeSH
- srdeční frekvence fyziologie MeSH
- support vector machine MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Fragmented QRS (fQRS) is an electrocardiographic (ECG) marker of myocardial conduction abnormality, characterized by additional notches in the QRS complex. The presence of fQRS has been associated with an increased risk of all-cause mortality and arrhythmia in patients with cardiovascular disease. However, current binary visual analysis is prone to intra- and inter-observer variability and different definitions are problematic in clinical practice. Therefore, objective quantification of fQRS is needed and could further improve risk stratification of these patients. We present an automated method for fQRS detection and quantification. First, a novel robust QRS complex segmentation strategy is proposed, which combines multi-lead information and excludes abnormal heartbeats automatically. Afterwards extracted features, based on variational mode decomposition (VMD), phase-rectified signal averaging (PRSA) and the number of baseline-crossings of the ECG, were used to train a machine learning classifier (Support Vector Machine) to discriminate fragmented from non-fragmented ECG-traces using multi-center data and combining different fQRS criteria used in clinical settings. The best model was trained on the combination of two independent previously annotated datasets and, compared to these visual fQRS annotations, achieved Kappa scores of 0.68 and 0.44, respectively. We also show that the algorithm might be used in both regular sinus rhythm and irregular beats during atrial fibrillation. These results demonstrate that the proposed approach could be relevant for clinical practice by objectively assessing and quantifying fQRS. The study sets the path for further clinical application of the developed automated fQRS algorithm.
- MeSH
- algoritmy MeSH
- elektrokardiografie * metody MeSH
- fibrilace síní * diagnóza MeSH
- lidé MeSH
- strojové učení MeSH
- support vector machine MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
One of the biggest problems in automated diagnosis of psychiatric disorders from medical images is the lack of sufficiently large samples for training. Sample size is especially important in the case of highly heterogeneous disorders such as schizophrenia, where machine learning models built on relatively low numbers of subjects may suffer from poor generalizability. Via multicenter studies and consortium initiatives researchers have tried to solve this problem by combining data sets from multiple sites. The necessary sharing of (raw) data is, however, often hindered by legal and ethical issues. Moreover, in the case of very large samples, the computational complexity might become too large. The solution to this problem could be distributed learning. In this paper we investigated the possibility to create a meta-model by combining support vector machines (SVM) classifiers trained on the local datasets, without the need for sharing medical images or any other personal data. Validation was done in a 4-center setup comprising of 480 first-episode schizophrenia patients and healthy controls in total. We built SVM models to separate patients from controls based on three different kinds of imaging features derived from structural MRI scans, and compared models built on the joint multicenter data to the meta-models. The results showed that the combined meta-model had high similarity to the model built on all data pooled together and comparable classification performance on all three imaging features. Both similarity and performance was superior to that of the local models. We conclude that combining models is thus a viable alternative that facilitates data sharing and creating bigger and more informative models.
- MeSH
- datové soubory jako téma * MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- multicentrické studie jako téma * MeSH
- neurozobrazování metody MeSH
- rozpoznávání automatizované metody MeSH
- schizofrenie diagnostické zobrazování MeSH
- support vector machine * MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Long QT syndrome (LQTS) presents a group of inheritable channelopathies with prolonged ventricular repolarization, leading to syncope, ventricular tachycardia, and sudden death. Differentiating LQTS genotypes is crucial for targeted management and treatment, yet conventional genetic testing remains costly and time-consuming. This study aims to improve the distinction between LQTS genotypes, particularly LQT3, through a novel electrocardiogram (ECG)-based approach. Patients with LQT3 are at elevated risk due to arrhythmia triggers associated with rest and sleep. Employing a database of genotyped long QT syndrome E-HOL-03-0480-013 ECG signals, we introduced two innovative parameterization techniques-area under the ECG curve and wave transformation into the unit circle-to classify LQT3 against LQT1 and LQT2 genotypes. Our methodology utilized single-lead ECG data with a 200 Hz sampling frequency. The support vector machine (SVM) model demonstrated the ability to discriminate LQT3 with a recall of 90% and a precision of 81%, achieving an F1-score of 0.85. This parameterization offers a potential substitute for genetic testing and is practical for low frequencies. These single-lead ECG data could enhance smartwatches' functionality and similar cardiovascular monitoring applications. The results underscore the viability of ECG morphology-based genotype classification, promising a significant step towards streamlined diagnosis and improved patient care in LQTS.
- MeSH
- dospělí MeSH
- elektrokardiografie * metody MeSH
- genotyp MeSH
- lidé MeSH
- strojové učení * MeSH
- support vector machine MeSH
- syndrom dlouhého QT * genetika diagnóza patofyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
Early detection of malignant thyroid nodules is crucial for effective treatment, but traditional diagnostic methods face challenges such as variability in expert opinions and limited integration of advanced imaging techniques. This prospective cohort study investigates a novel multimodal approach, integrating traditional methods with advanced machine learning techniques. We studied 181 patients who underwent fine-needle aspiration (FNA) biopsy, each contributing one nodule, resulting in a total of 181 nodules for our analysis. Data collection included sex, age, and ultrasound imaging, which incorporated elastography. Features extracted from these images included Thyroid Imaging Reporting and Data System (TIRADS) scores, elastography parameters, and radiomic features. The pathological results based on the FNA biopsy, provided by the pathologists, served as our gold standard for nodule classification. Our methodology, termed ELTIRADS, combines these features with interpretable machine learning techniques. Performance evaluation showed that a Support Vector Machine (SVM) classifier using TIRADS, elastography data, and radiomic features achieved high accuracy (0.92), with sensitivity (0.89), specificity (0.94), precision (0.89), and F1 score (0.89). To enhance interpretability, we used hierarchical clustering, shapley additive explanations (SHAP), and partial dependence plots (PDP). This combined approach holds promise for enhancing the accuracy of thyroid nodule malignancy detection, thereby contributing to advancements in personalized and precision medicine in the field of thyroid cancer research.
- MeSH
- dospělí MeSH
- elastografie * metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory štítné žlázy diagnostické zobrazování klasifikace patologie diagnóza MeSH
- prospektivní studie MeSH
- radiomika MeSH
- senioři MeSH
- štítná žláza diagnostické zobrazování patologie MeSH
- strojové učení * MeSH
- support vector machine MeSH
- tenkojehlová biopsie MeSH
- uzly štítné žlázy * diagnostické zobrazování patologie klasifikace MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Early diagnosis of schizophrenia could improve the outcomes and limit the negative effects of untreated illness. Although participants with schizophrenia show aberrant functional connectivity in brain networks, these between-group differences have a limited diagnostic utility. Novel methods of magnetic resonance imaging (MRI) analyses, such as machine learning (ML), may help bring neuroimaging from the bench to the bedside. Here, we used ML to differentiate participants with a first episode of schizophrenia-spectrum disorder (FES) from healthy controls based on resting-state functional connectivity (rsFC). METHOD: We acquired resting-state functional MRI data from 63 patients with FES who were individually matched by age and sex to 63 healthy controls. We applied linear kernel support vector machines (SVM) to rsFC within the default mode network, the salience network and the central executive network. RESULTS: The SVM applied to the rsFC within the salience network distinguished the FES from the control participants with an accuracy of 73.0% (p = 0.001), specificity of 71.4% and sensitivity of 74.6%. The classification accuracy was not significantly affected by medication dose, or by the presence of psychotic symptoms. The functional connectivity within the default mode or the central executive networks did not yield classification accuracies above chance level. CONCLUSIONS: Seed-based functional connectivity maps can be utilized for diagnostic classification, even early in the course of schizophrenia. The classification was probably based on trait rather than state markers, as symptoms or medications were not significantly associated with classification accuracy. Our results support the role of the anterior insula/salience network in the pathophysiology of FES.
- MeSH
- dospělí MeSH
- konektom metody MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mladý dospělý MeSH
- mozková kůra diagnostické zobrazování patofyziologie MeSH
- schizofrenie diagnostické zobrazování patofyziologie MeSH
- support vector machine * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Random Forest is an ensemble of decision trees based on the bagging and random subspace concepts. As suggested by Breiman, the strength of unstable learners and the diversity among them are the ensemble models' core strength. In this paper, we propose two approaches known as oblique and rotation double random forests. In the first approach, we propose rotation based double random forest. In rotation based double random forests, transformation or rotation of the feature space is generated at each node. At each node different random feature subspace is chosen for evaluation, hence the transformation at each node is different. Different transformations result in better diversity among the base learners and hence, better generalization performance. With the double random forest as base learner, the data at each node is transformed via two different transformations namely, principal component analysis and linear discriminant analysis. In the second approach, we propose oblique double random forest. Decision trees in random forest and double random forest are univariate, and this results in the generation of axis parallel split which fails to capture the geometric structure of the data. Also, the standard random forest may not grow sufficiently large decision trees resulting in suboptimal performance. To capture the geometric properties and to grow the decision trees of sufficient depth, we propose oblique double random forest. The oblique double random forest models are multivariate decision trees. At each non-leaf node, multisurface proximal support vector machine generates the optimal plane for better generalization performance. Also, different regularization techniques (Tikhonov regularization, axis-parallel split regularization, Null space regularization) are employed for tackling the small sample size problems in the decision trees of oblique double random forest. The proposed ensembles of decision trees produce trees with bigger size compared to the standard ensembles of decision trees as bagging is used at each non-leaf node which results in improved performance. The evaluation of the baseline models and the proposed oblique and rotation double random forest models is performed on benchmark 121 UCI datasets and real-world fisheries datasets. Both statistical analysis and the experimental results demonstrate the efficacy of the proposed oblique and rotation double random forest models compared to the baseline models on the benchmark datasets.
- MeSH
- algoritmy * MeSH
- analýza hlavních komponent MeSH
- rotace MeSH
- support vector machine * MeSH
- Publikační typ
- časopisecké články MeSH
The goal of this research was to design a solution to detect non-reported incidents, especially severe incidents. To achieve this goal, we proposed a method to process electronic medical records and automatically extract clinical notes describing severe incidents. To evaluate the proposed method, we implemented a system and used the system. The system successfully detected a non-reported incident to the safety management department.