The Impact of Divergent Algal Hydrocolloids Addition on the Physicochemical, Viscoelastic, Textural, and Organoleptic Properties of Cream Cheese Products
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
IGA/FT/2023/007
Tomas Bata University in Zlín
PubMed
37107398
PubMed Central
PMC10137602
DOI
10.3390/foods12081602
PII: foods12081602
Knihovny.cz E-resources
- Keywords
- cream cheese, furcellaran, hydrocolloids, sodium alginate, viscoelastic properties, ι-carrageenan, κ-carrageenan,
- Publication type
- Journal Article MeSH
The aim of the current study was to evaluate the addition of different algal hydrocolloids (κ-carrageenan, ι-carrageenan, furcellaran, and sodium alginate) at three different concentrations (0.50, 0.75, and 1.00% w/w) on the physicochemical, viscoelastic, textural, and organoleptic properties of model cream cheese (CC) samples. On the whole, the highest viscoelastic moduli and hardness values of the CC samples were reported when κ-carrageenan was used. Furthermore, increasing the concentrations of the tested hydrocolloids led to increases in the viscoelastic moduli and hardness values of CC. Recommendations for softer-consistency CC production include the application of κ-carrageenan at a concentration of 0.50-0.75% (w/w) or the use of furcellaran and sodium alginate at a concentration of 1.00% (w/w). For the production of CC with a more rigid consistency, it is recommended to apply κ-carrageenan at a concentration higher than 0.75% (w/w).
See more in PubMed
Gutiérrez-Méndez N., Balderrama-Carmona A., García-Sandoval S.E., Ramírez-Vigil P., Leal-Ramos M.Y., García-Triana A. Proteolysis and rheological properties of cream cheese made with a plant-derived coagulant from Solanum elaeagnifolium. Foods. 2019;8:44. doi: 10.3390/foods8020044. PubMed DOI PMC
Ningtyas D.W., Bhandari B., Bansal N., Prakash S. Effect of homogenisation of cheese milk and high-shear mixing of the curd during cream cheese manufacture. Int. J. Dairy Technol. 2018;71:417–431. doi: 10.1111/1471-0307.12482. DOI
Sainani M.R., Vyas H.K., Tong P.S. Characterization of particles in cream cheese. J. Dairy Sci. 2004;87:2854–2863. doi: 10.3168/jds.S0022-0302(04)73414-1. PubMed DOI
Fuquay J.W., Fox P.F., McSweeney P.L.H. Encyclopedia of Dairy Sciences. 2nd ed. Elsevier; London, UK: 2011.
Monteiro R.R., Tavares D.Q., Kindstedt P.S., Gigante M.L. Effect of pH on microstructure and characteristics of cream cheese. J. Food Sci. 2009;74:C112–C117. doi: 10.1111/j.1750-3841.2008.01037.x. PubMed DOI
Tamime A.Y. Handbook of Fermented Functional Foods. 2nd ed. CRC Press; Boca Raton, FL, USA: 2008. pp. 593–594.
Kim J., Watkinson P., Matia-Merino L., Smith J.R., Golding M. Evaluation of formulation design on the physical and structural properties of commercial cream cheeses. Int. J. Food Sci. Technol. 2022;57:6422–6434. doi: 10.1111/ijfs.15950. DOI
Saha D., Bhattacharya S. Hydrocolloids as thickening and gelling agents in food: A critical review. J. Food Sci. Technol. 2010;47:587–597. doi: 10.1007/s13197-010-0162-6. PubMed DOI PMC
Burey P., Bhandari B.R., Howes T., Gidley M.J. Hydrocolloid gel particles: Formation, characterization, and application. Crit. Rev. Food Sci. Nutr. 2008;48:361–377. doi: 10.1080/10408390701347801. PubMed DOI
Phillips G.O., Williams P.A. Introduction to food hydrocolloids. In: Phillips G.O., editor. Handbook of Hydrocolloids. 2nd rev. ed. Woodhead Publishing; Cambridge, UK: 2009.
Glass K., Doyle M.E. Safety of Processed Cheese. FRI Briefings, Food Research Institute, University of Wiskonsin; Madison, WI, USA: 2005.
Wadhwani R., McMahon D.J. Color of low-fat cheese influences flavor perception and consumer liking. J. Dairy Sci. 2012;95:2336–2346. doi: 10.3168/jds.2011-5142. PubMed DOI
Eha K., Pehk T., Heinmaa I., Kaleda A., Laos K. Impact of short-term heat treatment on the structure and functional properties of commercial furcellaran compared to commercial carrageenans. Heliyon. 2021;7:E06640. doi: 10.1016/j.heliyon.2021.e06640. PubMed DOI PMC
Jamróz E., Kulawik P., Kopel P., Balková R., Hynek D., Bytesnikova Z., Gagic M., Milosavljevic V., Adam V. Intelligent and active composite films based on furcellaran: Structural characterization, antioxidant and antimicrobial activities. Food Packag. Shelf Life. 2019;22:100405. doi: 10.1016/j.fpsl.2019.100405. DOI
Wurm F., Nussbaumer F., Pham T., Bechtold T. Structural elucidation of mixed carrageenan gels using rheometry. Food Hydrocoll. 2019;95:533–539. doi: 10.1016/j.foodhyd.2019.05.005. DOI
Rioux L.E., Turgeon S.L., Beaulieu M. Rheological characterization of polysaccharides extracted from brown seaweed. J. Sci. Food Agric. 2007;87:1630. doi: 10.1002/jsfa.2829. DOI
Venugopal V. Marine Polysaccharides. CRC Press; Boca Raton, FL, USA: 2011. Polysaccharides from Seaweed and Microalgae.
Cheese and Processed Cheese—Determination of the Total Solid Content (Reference Method) International Organization for Standardization; Geneva, Switzerland: 2004.
Cheese and Processed Cheese Products—Determination of Fat Content—Gravimetric Method (Reference Method) International Organization for Standardization; Geneva, Switzerland: 2004.
Winter H.H., Chambon F. Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J. Rheol. 1986;30:367–382. doi: 10.1122/1.549853. DOI
Černíková M., Nebesářová J., Salek R.N., Popková R., Buňka F. The effect of rework content addition on the microstructure and viscoelastic properties of processed cheese. J. Dairy Sci. 2018;101:2956–2962. doi: 10.3168/jds.2017-13742. PubMed DOI
Ruiz-Ramírez J., Arnau J., Serra X., Gou P. Effect of pH, NaCl content and proteolysis index on the relationship between water content and texture parameters in biceps femoris and semimembranosus muscles in dry-cured ham. Meat Sci. 2006;72:185–194. doi: 10.1016/j.meatsci.2005.06.016. PubMed DOI
Wang H.H., Sun D.W. Assessment of cheese browning affected by baking conditions using computer vision. J. Food Eng. 2003;56:339–345. doi: 10.1016/S0260-8774(02)00159-0. DOI
Nikzade V., Tehrani M.M., Saadatmand-Tarzjan M. Optimization of low-cholesterol–low-fat mayonnaise formulation: Effect of using soy milk and some stabilizer by a mixture design approach. Food Hydrocoll. 2012;28:344–352. doi: 10.1016/j.foodhyd.2011.12.023. DOI
Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. International Organization for Standardization; Geneva, Switzerland: 2012.
Sensory Analysis—General Guidance for the Design of Test Rooms. International Organization for Standardization; Geneva, Switzerland: 2007.
Weiserová E., Doudová L., Galiová L., Žák L., Michálek J., Janiš R., Buňka F. The effect of combinations of sodium phosphates in binary mixtures on selected texture parameters of processed cheese spreads. Int. Dairy J. 2011;21:979–986. doi: 10.1016/j.idairyj.2011.06.006. DOI
Tadeu da Veiga Correia V., D’Angelis D.F., Neris dos Santos A., Silva Roncheti E.F., Vieira Queiroz V.A., Fontes Figueiredo J.E., Azevedo da Silva W., Ferreira A.A., Fante C.A. Tannin-sorghum flours in cream cheese: Physicochemical, antioxidant and sensory characterization. LWT. 2022;154:112672. doi: 10.1016/j.lwt.2021.112672. DOI
Schulz-Collins D., Senge B. Cheese: Chemistry, Physics and Microbiology: Major Cheese Groups. Elsevier; Amsterdam, The Netherlands: 2004. Acid- and acid/rennet-curd cheeses part A: Quark, cream cheese and related varieties; pp. 301–328. DOI
Ruusunen M., Vainionpää J., Puolanne E., Lyly M., Lähteenmäki L., Niemistö M., Ahvenainen R. Effect of sodium citrate, carboxymethyl cellulose and carrageenan levels on quality characteristics of low-salt and low-fat bologna type sausages. Meat Sci. 2003;64:371–381. doi: 10.1016/S0309-1740(02)00178-X. PubMed DOI
Møller S.M., Hansen T.B., Andersen U., Lillevang S.K., Rasmussen A., Bertram H.C. Water properties in cream cheeses with variations in pH, fat, and salt content and correlation to microbial survival. J. Agric. Food Chem. 2012;60:1635–1644. doi: 10.1021/jf204371v. PubMed DOI
Joyner (Melito) H.S. Explaining food texture through rheology. Curr. Opin. Food Sci. 2018;21:7–14. doi: 10.1016/j.cofs.2018.04.003. DOI
Schädle C.N., Bader-Mittermaier S., Sanahuja S. The effect of corn dextrin on the rheological, tribological, and aroma release properties of a reduced-fat model of processed cheese spread. Molecules. 2022;27:1864. doi: 10.3390/molecules27061864. PubMed DOI PMC
Kůrová V., Salek R.N., Vašina M., Vinklárková K., Zálešáková L., Gál R., Adámek R., Buňka F. The effect of homogenization and addition of polysaccharides on the viscoelastic properties of processed cheese sauce. J. Dairy Sci. 2022;105(8):6563–6577. doi: 10.3168/jds.2021-21520. PubMed DOI
Blakemore W.R., Harpell A.R. Carrageenan. In: Imeson A., editor. Food Stabilisers, Thickeners and Gelling Agents. Wiley-Blackwell Publishing; Hoboken, NJ, USA: 2010. pp. 73–94.
Černíková M., Buňka F., Pavlínek V., Březina P., Hrabě J., Valášek P. Effect of carrageenan type on viscoelastic properties of processed cheese. Food Hydrocoll. 2008;22:1054–1061. doi: 10.1016/j.foodhyd.2007.05.020. DOI
Míšková Z., Salek R.N., Křenková B., Kůrová V., Němečková I., Pachlová V., Buňka F. The effect of κ- and ι-carrageenan concentrations on the viscoelastic and sensory properties of cream desserts during storage. LWT. 2021;145:111539. doi: 10.1016/j.lwt.2021.111539. DOI
Macků I., Buňka F., Voldánová B., Pavlínek V. Effect of addition of selected solid cosolutes on viscoelastic properties of model processed cheese containing pectin. Food Hydrocoll. 2009;23:2078–2084. doi: 10.1016/j.foodhyd.2009.03.020. DOI
Langendorff V., Cuvelier G., Launay B., Michon C., Parker A., De Kruif C.G. Casein micelle/iota carrageenan interactions in milk: Influence of temperature. Food Hydrocoll. 1999;13:211–218. doi: 10.1016/S0268-005X(98)00087-3. DOI
Nagyová G., Buňka F., Salek R.N., Černíková M., Mančík P., Grůber T., Kuchař D. Use of sodium polyphosphates with different linear lengths in the production of spreadable processed cheese. J. Dairy Sci. 2014;97:111–122. doi: 10.3168/jds.2013-7210. PubMed DOI
Venugopal V. Marine Polysaccharides: Food Applications. CRC Press; Boca Raton, FL, USA: 2011. p. 377.
Piska I., Štěnina J., Ipsen R.H., Qwist K.B. Sborník Celostátní Přehlídky Sýrů 2002. Česká společnost chemická; Praha, Czech Republic: 2002. Mikrostruktura a reologické vlastnosti vysokotučného taveného sýry; pp. 192–196.
Cunha C.R., Grimaldi R., Alcântara M.R., Viotto W.H. Effect of the type of fat on rheology, functional properties and sensory acceptance of spreadable cheese analogue. Int. J. Dairy Technol. 2013;66:54–62. doi: 10.1111/j.1471-0307.2012.00876.x. DOI
Salek R.N., Černíková M., Lorencová E., Pachlová V., Kůrová V., Šenkýřová J., Buňka F. The impact of Cheddar or white brined cheese with various maturity degrees on the processed cheese consistency: A comparative study. Int. Dairy J. 2020;111:104816. doi: 10.1016/j.idairyj.2020.104816. DOI
Nickerson M.T., Paulson A.T., Hallett F.R. Dilute solution properties of κ-carrageenan polysaccharides: Effect of potassium and calcium ions on chain conformation. Carbohydr. Polym. 2004;58:25–33. doi: 10.1016/j.carbpol.2004.06.017. DOI
Polášek Z., Salek R.N., Vašina M., Lyčková A., Gál R., Pachlová V., Buňka F. The effect of furcellaran or κ-carrageenan addition on the textural, rheological and mechanical vibration damping properties of restructured chicken breast ham. LWT. 2021;138:110623. doi: 10.1016/j.lwt.2020.110623. DOI
Trius A., Sebranek J.G., Lanier T. Carrageenans and their use in meat products. Crit. Rev. Food Sci. Nutr. 2009;36:69–85. doi: 10.1080/10408399609527719. PubMed DOI
Aguilera J.M., Stanley D.V. Microstructural Principles of Food Processing and Engineering. 2nd ed. Aspen Publishers; Gaithersburg, MD, USA: 1999. pp. 93–108.
Phillips G.O., Williams P.A. Handbook of Hydrocolloids. CRC Press; Boca Raton, FL, USA: 2000.
Lee S.K., Klostermeyer H. The effect of pH on the rheological properties of reduced-fat model processed cheese spreads. LWT. 2001;34:288–292. doi: 10.1006/fstl.2001.0761. DOI
Milovanovic B., Djekic I., Miocinovic J., Djordjevic V., Lorenzo J.M., Barba F.J., Mörlein D., Tomasevic I. What is the color of milk and dairy products and how is it measured? Foods. 2020;9:1629. doi: 10.3390/foods9111629. PubMed DOI PMC