• This record comes from PubMed

Quality Evaluation of Chicken Liver Pâté Affected by Algal Hydrocolloids Addition: A Textural and Rheological Approach

. 2024 Sep 19 ; 14 (18) : . [epub] 20240919

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Hydrocolloids are used in spreadable meat or poultry products to improve consistency, emulsion stability and water retention, resulting in products with desired functional and organoleptic properties. The scope of the work was to evaluate the addition of three divergent algal hydrocolloids (κ-carrageenan, ι-carrageenan, furcellaran) at four different concentrations (0.25, 0.50, 0.75, and 1.00% w/w) on the physicochemical, textural, rheological and organoleptic properties of model chicken liver pâté (CLP) samples. Overall, the highest hardness and viscoelastic moduli values of the CLP samples were reported when κ-carrageenan and furcellaran were utilized at a concentration of 0.75% w/w (p < 0.05). Furthermore, increasing the concentrations of the utilized hydrocolloids led to increase in the viscoelastic moduli and hardness values of CLP. Compared to the control sample, an increase in spreadability was reported in the CLP samples with the addition of hydrocolloids. Finally, the use of algal hydrocolloids proved to be an effective way to modify the techno-functional properties of CLP.

See more in PubMed

de Araújo P.D., Araújo W., Patarata L., Fraqueza M.J. Understanding the main factors that influence consumer quality perception and attitude towards meat and processed meat products. Meat Sci. 2022;193:108952. doi: 10.1016/j.meatsci.2022.108952. PubMed DOI

Jridi M., Abdelhedi O., Souissi N., Kammoun M., Nasri M., Ayadi M.A. Improvement of the physicochemical, textural and sensory properties of meat sausage by edible cuttlefish gelatin addition. Food Biosci. 2015;12:67–72. doi: 10.1016/j.fbio.2015.07.007. DOI

Caponio F., Difonzo G., Squeo G., Fortunato S., Silletti R., Summo C., Paradiso V.M., Pasqualone A. Influence of homogenization time and speed on rheological and volatile composition in olive-based pates. Foods. 2019;8:115. doi: 10.3390/foods8040115. PubMed DOI PMC

Tiensa B.E., Barbut S., Marangoni A.G. Influence of fat structure on the mechanical properties of commercial pate products. Food Res. Int. 2017;100:558–565. doi: 10.1016/j.foodres.2017.07.051. PubMed DOI

Lasekan A., Abu Bakar F., Hashim D. Potential of chicken by-products as sources of useful biological resources. Waste Manag. 2013;33:552–565. doi: 10.1016/j.wasman.2012.08.001. PubMed DOI

Mohan A., Long J.M. Chapter 23—Valorization of wastes and by-products from the meat industry. In: Bhat R., editor. Valorization of Agri-Food Wastes and By-Products. Academic Press; Cambridge, MA, USA: 2021. pp. 457–474.

Toldrá F., Aristoy M.C., Mora L., Reig M. Innovations in value-addition of edible meat by-products. Meat Sci. 2012;92:290–296. doi: 10.1016/j.meatsci.2012.04.004. PubMed DOI

Gómez-Guillén M.C., Giménez B., López-Caballero M.E., Montero M.P. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll. 2011;25:1813–1827. doi: 10.1016/j.foodhyd.2011.02.007. DOI

Polásek Z., Salek R.N., Vasina M., Lycková A., Gál R., Pachlová V., Bunka F. The effect of furcellaran or κ-carrageenan addition on the textural, rheological and mechanical vibration damping properties of restructured chicken breast ham. LWT-Food Sci. Technol. 2021;138:110623. doi: 10.1016/j.lwt.2020.110623. DOI

Cao C.N., Yuan D.X., Kong B.H., Chen Q., He J.J., Liu Q. Effect of different κ-carrageenan incorporation forms on the gel properties and in vitro digestibility of frankfurters. Food Hydrocoll. 2022;129:107637. doi: 10.1016/j.foodhyd.2022.107637. DOI

Younes M., Aggett P., Aguilar F., Crebelli R., Filipic M., Frutos M.J., Galtier P., Gott D., Gundert-Remy U., Kuhnle G.G., et al. Re-evaluation of carrageenan (E 407) and processed Eucheuma seaweed (E 407a) as food additives. EFSA J. 2018;16:e05238. doi: 10.2903/j.efsa.2018.5238. PubMed DOI PMC

Imeson A.P. Chapter 7—Carrageenan and furcellaran. In: Phillips G.O., Williams P.A., editors. Handbook of Hydrocolloids. 2nd ed. Woodhead Publishing; Sawston, UK: 2009. pp. 164–185.

Somboonpanyakul P., Barbut S., Jantawat P., Chinprahast N. Textural and sensory quality of poultry meat batter containing malva nut gum, salt and phosphate. LWT. 2007;40:498–505. doi: 10.1016/j.lwt.2005.12.008. DOI

Saluri M., Kaljuvee K.-L., Paalme T., Reile I., Tuvikene R. Structural variability and rheological properties of furcellaran. Food Hydrocoll. 2021;111:106227. doi: 10.1016/j.foodhyd.2020.106227. DOI

Kim S.M., Wen Y., Kim H.W., Park H.J. Textural and sensory qualities of low-calorie surimi with carrageenan inserted as a protein substitute using coaxial extrusion 3D food printing. J. Food Eng. 2022;333:111141. doi: 10.1016/j.jfoodeng.2022.111141. DOI

Míšková Z., Salek R.N., Křenková B., Kůrová V., Němečková I., Pachlová V., Buňka F. The effect of κ- and ι-carrageenan concentrations on the viscoelastic and sensory properties of cream desserts during storage. LWT. 2021;145:111539. doi: 10.1016/j.lwt.2021.111539. DOI

Sarteshnizi R.A., Hosseini H., Khaneghah A.M., Karimi N. A review on application of hydrocolloids in meat and poultry products. Int. Food Res. J. 2015;22:872–887.

Kravchenko A.O., Anastyuk S.D., Glazunov V.P., Sokolova E.V., Isakov V.V., Yermak I.M. Structural characteristics of carrageenans of red alga Mastocarpus pacificus from sea of Japan. Carbohydr. Polym. 2020;229:115518. doi: 10.1016/j.carbpol.2019.115518. PubMed DOI

Stępień A., Juszczak L., Synkiewicz-Musialska B., Zachariasz P., Jamróz E. Influence of furcellaran and safflower oil concentration on the properties of model emulgel systems. Int. J. Biol. Macromol. 2024;278:134751. doi: 10.1016/j.ijbiomac.2024.134751. PubMed DOI

Tuvikene R. Chapter 25—Carrageenans. In: Phillips G.O., Williams P.A., editors. Handbook of Hydrocolloids. 3rd ed. Woodhead Publishing; Sawston, UK: 2021. pp. 767–804.

Marangoni L., Vieira R.P., Jamróz E., Anjos C. Furcellaran: An innovative biopolymer in the production of films and coatings. Carbohydr. Polym. 2021;252:117221. doi: 10.1016/j.carbpol.2020.117221. PubMed DOI

Jamróz E., Kulawik P., Kopel P., Balková R., Hynek D., Bytesnikova Z., Gagic M., Milosavljevic V., Adam V. Intelligent and active composite films based on furcellaran: Structural characterization, antioxidant and antimicrobial activities. Food Packag. Shelf Life. 2019;22:100405. doi: 10.1016/j.fpsl.2019.100405. DOI

Ross 308. (2014). Ross 308 Broiler: Nutrition Specifications. [(accessed on 14 May 2024)]. Available online: https://eliasnutri.wordpress.com/wp-content/uploads/2012/04/ross308broilernutritionspecs2014-en.pdf.

Meat and Meat Products—Determination of Nitrogen Content (Reference Method) International Organization for Standardization; Geneva, Switzerland: 2023.

Cheese and Processed Chesse—Determination of Total Solids Content (Reference Method) International Organization for Standardization; Geneva, Switzerland: 2004.

Meat and Meat Products—Determination of Total Fat Content. International Organization for Standardization; Geneva, Switzerland: 1973.

Heat Processed Foods in Hermetically Sealed Containers: Determination of pH. International Organization for Standardization; Geneva, Switzerland: 1993.

Vincová A., Šantová K., Kůrová V., Kratochvílová A., Halámková V., Suchánková M., Lorencová E., Sumczynski D., Salek R.N. The Impact of Divergent Algal Hydrocolloids Addition on the Physicochemical, Viscoelastic, Textural, and Organoleptic Properties of Cream Cheese Products. Foods. 2023;12:1602. doi: 10.3390/foods12081602. PubMed DOI PMC

Foegeding E.A., Ramsey S.R. Rheological and Water-Holding Properties of Gelled Meat Batters Containing Iota Carrageenan, Kappa-Carrageenan or Xanthan Gum. J. Food Sci. 1987;52:549–553. doi: 10.1111/j.1365-2621.1987.tb06672.x. DOI

Tapp W.N., Yancey J., Apple J.K. How is the instrumental color of meat measured? Meat Sci. 2011;89:1–5. doi: 10.1016/j.meatsci.2010.11.021. PubMed DOI

Delgado-Pando G., Cofrades S., Ruiz-Capillas C., Triki M., Jiménez-Colmenero F. Low-fat pork liver pates enriched with n-3 PUFA/konjac gel: Dynamic rheological properties and technological behaviour during chill storage. Meat Sci. 2012;92:44–52. doi: 10.1016/j.meatsci.2012.04.002. PubMed DOI

Petcharat T., Chaijan M., Karnjanapratum S. Effect of furcellaran incorporation on gel properties of sardine surimi. Int. J. Food Sci. Technol. 2021;56:5957–5967. doi: 10.1111/ijfs.15246. DOI

Warner R.D. Chapter 14—The eating quality of meat: IV—Water holding capacity and juiciness. In: Toldrá F., editor. Lawrie’s Meat Science. 9th ed. Woodhead Publishing; Sawston, UK: 2023. pp. 457–508.

Zhang X.Y., Wang Q., Liu Z., Zhi L.Y., Jiao B., Hu H., Ma X.J., Agyei D., Shi A.M. Plant protein-based emulsifiers: Mechanisms, techniques for emulsification enhancement and applications. Food Hydrocoll. 2023;144:109008. doi: 10.1016/j.foodhyd.2023.109008. DOI

Berk Z. Chapter 1—Physical Properties of Food Materials. In: Berk Z., editor. Food Process Engineering and Technology. 1st ed. Elsevier; Amsterdam, The Netherlands: 2009. pp. 13–19.

Rodel W. Chapter 16—Water activity and its measurement in food. In: Kress-Rogers E., Brimelow C.J.B., editors. Instrumentation and Sensors for the Food Industry. 2nd ed. Woodhead Publishing; Sawston, UK: 2001. pp. 454–463.

Pires M.A., Munekata P., Baldin J.C., Rocha Y., Carvalho L.T., dos Santos I.R., Barros J.C., Trindade M.A. The effect of sodium reduction on the microstructure, texture and sensory acceptance of Bologna sausage. Food Struct. 2017;14:1–7. doi: 10.1016/j.foostr.2017.05.002. DOI

Moresi M., Bruno M., Parente E. Viscoelastic properties of microbial alginate gels by oscillatory dynamic tests. J. Food Eng. 2004;64:179–186. doi: 10.1016/j.jfoodeng.2003.09.030. DOI

Verbeken D., Neirinck N., Van Der Meeren P., Dewettinck K. Influence of κ-carrageenan on the thermal gelation of salt-soluble meat proteins. Meat Sci. 2005;70:161–166. doi: 10.1016/j.meatsci.2004.12.007. PubMed DOI

Roque A.M., Montinola D., Geonzon L., Matsukawa S., Lobarbio C.F.Y., Taboada E.B., Bacabac R.G. Rheological elucidation of the viscoelastic properties and network interaction of mixed high-methoxyl pectin and kappa-carrageenan gels. Food Hydrocoll. 2022;129:107647. doi: 10.1016/j.foodhyd.2022.107647. DOI

Ayadi M.A., Kechaou A., Makni I., Attia H. Influence of carrageenan addition on turkey meat sausages properties. J. Food Eng. 2009;93:278–283. doi: 10.1016/j.jfoodeng.2009.01.033. DOI

Ruusunen M., Vainionpää J., Puolanne E., Lyly M., Lähteenmäki L., Niemistö M., Ahvenainen R. Effect of sodium citrate, carboxymethyl cellulose and carrageenan levels on quality characteristics of low-salt and low-fat bologna type sausages. Meat Sci. 2003;64:371–381. doi: 10.1016/S0309-1740(02)00178-X. PubMed DOI

Tonchev M., Atanasov T., Todorova A., Atanasova T., Shtrankova N., Momchilovа M., Zsivanovits G. Sensory and instrumental texture analysis of Bulgarian commercial pates. Agric. Sci. Technol. 2017;9:251–256. doi: 10.15547/ast.2017.03.047. DOI

Pětová M., Polášek Z., Lapčíková B., Lapčík L., Buňková L., Pospiech M., Foltin P., Talár J., Salek R.N., Kůrová V., et al. Evaluation of the viscoelastic properties of pork liver pâté during sterilisation observed in situ. LWT Food Sci. Technol. 2024;191:115614. doi: 10.1016/j.lwt.2023.115614. DOI

Sinha A., Bhargav A. Young’s modulus estimation in food samples: Effect of experimental parameters. Mech. Ind. 2020;21:404. doi: 10.1051/meca/2020025. DOI

Brenner T., Tuvikene R., Parker A., Matsukawa S., Nishinari K. Rheology and structure of mixed kappa-carrageenan/iota-carrageenan gels. Food Hydrocoll. 2014;39:272–279. doi: 10.1016/j.foodhyd.2014.01.024. DOI

Feng Y.Y., Liang X., Zhang J.M., Kong B.H., Shi P.R., Cao C.A., Zhang H.W., Liu Q., Zhang Y.M. Effects of transglutaminase coupled with κ-carrageenan on the rheological behaviours, gel properties and microstructures of meat batters. Food Hydrocoll. 2024;146:109265. doi: 10.1016/j.foodhyd.2023.109265. DOI

Lesiow T., Rentfrow G.K., Xiong Y. Polyphosphate and myofibrillar protein extract promote transglutaminase-mediated enhancements of rheological and textural properties of PSE pork meat batters. Meat Sci. 2017;128:40–46. doi: 10.1016/j.meatsci.2017.02.002. PubMed DOI

Cao C.N., Feng Y.Y., Kong B.H., Sun F.D., Yang L., Liu Q. Transglutaminase crosslinking promotes physical and oxidative stability of filled hydrogel particles based on biopolymer phase separation. Int. J. Biol. Macromol. 2021;172:429–438. doi: 10.1016/j.ijbiomac.2021.01.073. PubMed DOI

Javadi A., Savadkoohi S., Ghafouri-Oskuei H., Saeidi-Asl M.R., Azadmard-Damirchi S., Armin M., Riazi F. Mechanical attributes, colloidal interactions, and microstructure of meat batter influenced by flaxseed flour and tomato powder. Meat Sci. 2022;187:108750. doi: 10.1016/j.meatsci.2022.108750. PubMed DOI

Le X.T., Rioux L.E., Turgeon S.L. Formation and functional properties of protein-polysaccharide electrostatic hydrogels in comparison to protein or polysaccharide hydrogels. Adv. Colloid Interface Sci. 2017;239:127–135. doi: 10.1016/j.cis.2016.04.006. PubMed DOI

Steen L., Fraeye I., De Mey E., Goemaere O., Paelinck H., Foubert I. Effect of Salt and Liver/Fat Ratio on Viscoelastic Properties of Liver Paste and Its Intermediates. Food Bioprocess Technol. 2014;7:496–505. doi: 10.1007/s11947-012-1038-8. DOI

Kumar Y., Tyagi S.K., Vishwakarma R.K., Kalia A. Textural, microstructural, and dynamic rheological properties of low-fat meat emulsion containing aloe gel as potential fat replacer. Int. J. Food Prop. 2017;20:S1132–S1144. doi: 10.1080/10942912.2017.1336721. DOI

Estévez M., Ventanas S., Cava R. Physicochemical properties and oxidative stability of liver pate as affected by fat content. Food Chem. 2005;92:449–457. doi: 10.1016/j.foodchem.2004.08.014. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...