Metal ions-binding T4 lysozyme as an intramolecular protein purification tag compatible with X-ray crystallography
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28342173
PubMed Central
PMC5441413
DOI
10.1002/pro.3162
Knihovny.cz E-zdroje
- Klíčová slova
- crystal structure, endolysin, histidine tag, lysozyme, phage T4, protein purification,
- MeSH
- bakteriofág T4 * enzymologie genetika MeSH
- chromatografie afinitní metody MeSH
- krystalografie rentgenová metody MeSH
- muramidasa * chemie genetika izolace a purifikace MeSH
- mutace * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- muramidasa * MeSH
Phage T4 lysozyme is a well folded and highly soluble protein that is widely used as an insertion tag to improve solubility and crystallization properties of poorly behaved recombinant proteins. It has been used in the fusion protein strategy to facilitate crystallization of various proteins including multiple G protein-coupled receptors, lipid kinases, or sterol binding proteins. Here, we present a structural and biochemical characterization of its novel, metal ions-binding mutant (mbT4L). We demonstrate that mbT4L can be used as a purification tag in the immobilized-metal affinity chromatography and that, in many respects, it is superior to the conventional hexahistidine tag. In addition, structural characterization of mbT4L suggests that mbT4L can be used as a purification tag compatible with X-ray crystallography.
Zobrazit více v PubMed
Young I, Wang I, Roof WD (2000) Phages will out: strategies of host cell lysis. Trends Microbiol 8:120–128. PubMed
Baase WA, Liu L, Tronrud DE, Matthews BW (2010) Lessons from the lysozyme of phage T4. Protein Sci 19:631–641. PubMed PMC
Chien EY, Liu W, Zhao Q, Katritch V, Han GW, Hanson MA, Shi L, Newman AH, Javitch JA, Cherezov V, Stevens RC (2010) Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330:1091–1095. PubMed PMC
Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI, Kobilka BK (2012) Structure of the delta‐opioid receptor bound to naltrindole. Nature 485:400–404. PubMed PMC
Haga K, Kruse AC, Asada H, Yurugi‐Kobayashi T, Shiroishi M, Zhang C, Weis WI, Okada T, Kobilka BK, Haga T, Kobayashi T (2012) Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482:547–551. PubMed PMC
Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, Stevens RC (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217. PubMed PMC
Kruse AC, Hu J, Pan AC, Arlow DH, Rosenbaum DM, Rosemond E, Green HF, Liu T, Chae PS, Dror RO, Shaw DE, Weis WI, Wess J, Kobilka BK (2012) Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482:552–556. PubMed PMC
Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S (2012) Crystal structure of the micro‐opioid receptor bound to a morphinan antagonist. Nature 485:321–326. PubMed PMC
Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK (2007) GPCR engineering yields high‐resolution structural insights into beta2‐adrenergic receptor function. Science 318:1266–1273. PubMed
Shimamura T, Shiroishi M, Weyand S, Tsujimoto H, Winter G, Katritch V, Abagyan R, Cherezov V, Liu W, Han GW, Kobayashi T, Stevens RC, Iwata S (2011) Structure of the human histamine H1 receptor complex with doxepin. Nature 475:65–70. PubMed PMC
Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC, Hamel DJ, Kuhn P, Handel TM, Cherezov V, Stevens RC (2010) Structures of the CXCR4 chemokine GPCR with small‐molecule and cyclic peptide antagonists. Science 330:1066–1071. PubMed PMC
Zhang C, Srinivasan Y, Arlow DH, Fung JJ, Palmer D, Zheng Y, Green HF, Pandey A, Dror RO, Shaw DE, Weis WI, Coughlin SR, Kobilka BK (2012) High‐resolution crystal structure of human protease‐activated receptor 1. Nature 492:387–392. PubMed PMC
Tong J, Yang H, Yang H, Eom SH, Im YJ (2013) Structure of Osh3 reveals a conserved mode of phosphoinositide binding in oxysterol‐binding proteins. Structure. 21:1203–1213. PubMed
Yang H, Tong J, Lee CW, Ha S, Eom SH, Im YJ (2015) Structural mechanism of ergosterol regulation by fungal sterol transcription factor Upc2. Nat Commun 6:6129. PubMed
Baumlova A, Chalupska D, Rozycki B, Jovic M, Wisniewski E, Klima M, Dubankova A, Kloer DP, Nencka R, Balla T, Boura E (2014) The crystal structure of the phosphatidylinositol 4‐kinase II. EMBO Rep 15:1085–1092. PubMed PMC
Klima M, Baumlova A, Chalupska D, Hřebabecký H, Dejmek M, Nencka R, Boura E (2015) The high‐resolution crystal structure of phosphatidylinositol 4‐kinase IIβ and the crystal structure of phosphatidylinositol 4‐kinase IIα containing a nucleoside analogue provide a structural basis for isoform‐specific inhibitor design. Acta Cryst D71:1555–1563. PubMed
Baumlova A, Gregor J, Boura E (2016) The structural basis for calcium inhibition of lipid kinase PI4K IIalpha and comparison with the apo state. Physiol Res 65:987–993. PubMed
Zou Y, Weis WI, Kobilka BK (2012) N‐terminal T4 lysozyme fusion facilitates crystallization of a G protein coupled receptor. PLoS One 7:e46039. PubMed PMC
Rennell D, Bouvier SE, Hardy LW, Poteete AR (1991) Systematic mutation of bacteriophage T4 lysozyme. J Mol Biol 222:67–88. PubMed
Thorsen TS, Matt R, Weis WI, Kobilka BK (2014) Modified T4 lysozyme fusion proteins facilitate G protein‐coupled receptor crystallogenesis. Structure 22:1657–1664. PubMed PMC
Mooers BH, Tronrud DE, Matthews BW (2009) Evaluation at atomic resolution of the role of strain in destabilizing the temperature‐sensitive T4 lysozyme mutant Arg 96 –> His. Protein Sci 18:863–870. PubMed PMC
Matthews BW, Remington SJ, Grutter MG, Anderson WF (1981) Relation between hen egg white lysozyme and bacteriophage T4 lysozyme: evolutionary implications. J Mol Biol 147:545–558. PubMed
Matsumura M, Matthews BW (1989) Control of enzyme activity by an engineered disulfide bond. Science 243:792–794. PubMed
Block H, Maertens B, Spriestersbach A, Brinker N, Kubicek J, Fabis R, Labahn J, Schafer F (2009) Immobilized‐metal affinity chromatography (IMAC): a review. Methods Enzymol 463:439–473. PubMed
Boura E, Nencka R (2015) Phosphatidylinositol 4‐kinases: Function, structure, and inhibition. Exper Cell Res 337:136–145. PubMed
Bornhorst JA, Falke JJ (2000) Purification of proteins using polyhistidine affinity tags. Methods Enzymol 326:245–254. PubMed PMC
Mueller U, Darowski N, Fuchs MR, Förster R, Hellmig M, Paithankar KS, Pühringer S, Steffien M, Zocher G, Weiss MS (2012) Facilities for macromolecular crystallography at the Helmholtz‐Zentrum Berlin. J Synch Radiat 19:442–449. PubMed PMC
Kabsch W (2010) XDS. Acta Cryst D66:125–132. PubMed PMC
McCoy AJ, Grosse‐Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Cryst 40:658–674. PubMed PMC
Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung L‐W, Kapral GJ, Grosse‐Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive Python‐based system for macromolecular structure solution. Acta Cryst D66:213–221. PubMed PMC
Afonine PV, Grosse‐Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, Terwilliger TC, Urzhumtsev A, Zwart PH, Adams PD (2012) Towards automated crystallographic structure refinement with phenix.refine. Acta Cryst D68:352–367. PubMed PMC
Emsley P, Cowtan K (2004) Coot: model‐building tools for molecular graphics. Acta Cryst D60:2126–2132. PubMed
Schrodinger (2015) The PyMOL Molecular Graphics System, Version 1.8. In