phage T4 Dotaz Zobrazit nápovědu
Bacteriophage T4 is a virus with well-known genetics, structure, and biology. Such techniques as X-ray crystallography, cryo-EM, and three-dimensional (3D) image reconstruction allowed describing its structure very precisely. The genome of this bacteriophage was completely sequenced, which opens the way for the use of many molecular techniques, such as site-specific mutagenesis, which was widely applied, e.g., in investigating the functions of some essential T4 proteins. The phage-display method, which is commonly applied in bacteriophage modifications, was successfully used to display antigens (PorA protein, VP2 protein of vvIBDV, and antigens of anthrax and HIV) on T4's capsid platform. As first studies showed, the phage-display system as well as site-specific mutagenesis may also be used to modify interactions between phage particles and mammalian cells or to obtain phages infecting species other than the host bacteria. These may be used, among others, in the constantly developing bacteriophage therapy. All manipulations of this popular bacteriophage may enable the development of vaccine technology, phage therapy, and other branches of biological and medical science.
Phage T4 lysozyme is a well folded and highly soluble protein that is widely used as an insertion tag to improve solubility and crystallization properties of poorly behaved recombinant proteins. It has been used in the fusion protein strategy to facilitate crystallization of various proteins including multiple G protein-coupled receptors, lipid kinases, or sterol binding proteins. Here, we present a structural and biochemical characterization of its novel, metal ions-binding mutant (mbT4L). We demonstrate that mbT4L can be used as a purification tag in the immobilized-metal affinity chromatography and that, in many respects, it is superior to the conventional hexahistidine tag. In addition, structural characterization of mbT4L suggests that mbT4L can be used as a purification tag compatible with X-ray crystallography.
A systematic method for the analysis of the hydration structure of proteins is demonstrated on the case study of lysozyme. The method utilises multiple structural data of the same protein deposited in the protein data bank. Clusters of high water occupancy are localised and characterised in terms of their interaction with protein. It is shown that they constitute a network of interconnected hydrogen bonds anchored to the protein molecule. The high occupancy of the clusters does not directly correlate with water-protein interaction energy as was originally hypothesised. The highly occupied clusters rather correspond to the nodes of the hydration network that have the maximum number of hydrogen bonds including both the protein atoms and the surrounding water clusters.
- Publikační typ
- abstrakt z konference MeSH