Tick-Pathogen Ensembles: Do Molecular Interactions Lead Ecological Innovation?

. 2017 ; 7 () : 74. [epub] 20170313

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28348982

Zobrazit více v PubMed

Alberdi P., Espinosa P. J., Cabezas-Cruz A., de la Fuente J. (2016). Anaplasma phagocytophilum manipulates host cell apoptosis by different mechanisms to establish infection. Vet. Sci. 3:15 10.3390/vetsci3030015 PubMed DOI PMC

Ayllón N., Villar M., Galindo R. C., Kocan K. M., Šíma R., López J. A., et al. . (2015). Systems biology of tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in the tick vector Ixodes scapularis. PLoS Genet. 11:e1005120. 10.1371/journal.pgen.1005120 PubMed DOI PMC

Belova O. A., Burenkova L. A., Karganova G. G. (2012). Different tick-borne encephalitis virus (TBEV) prevalences in unfed versus partially engorged ixodid ticks - evidence of virus replication and changes in tick behavior. Ticks Tick Borne Dis. 3, 240–246. 10.1016/j.ttbdis.2012.05.005 PubMed DOI

Bierne H., Cossart P. (2012). When bacteria target the nucleus: the emerging family of nucleomodulins. Cell. Microbiol. 14, 622–633. 10.1111/j.1462-5822.2012.01758.x PubMed DOI

Borjesson D. L., Kobayashi S. D., Whitney A. R., Voyich J. M., Argue C. M., Deleo F. R. (2005). Insights into pathogen immune evasion mechanisms: Anaplasma phagocytophilum fails to induce an apoptosis differentiation program in human neutrophils. J. Immunol. 174, 6364–6372. 10.4049/jimmunol.174.10.6364 PubMed DOI

Bouquet J., Soloski M. J., Swei A., Cheadle C., Federman S., Billaud J. N., et al. . (2016). Longitudinal transcriptome analysis reveals a sustained differential gene expression signature in patients treated for acute lyme disease. MBio 7, e00100–e00116. 10.1128/mBio.00100-16 PubMed DOI PMC

Busby A. T., Ayllón N., Kocan K. M., Blouin E. F., de la Fuente G., Galindo R. C., et al. . (2012). Expression of heat shock proteins and subolesin affects stress responses, Anaplasma phagocytophilum infection and questing behaviour in the tick, Ixodes scapularis. Med. Vet. Entomol. 26, 92–102. 10.1111/j.1365-2915.2011.00973.x PubMed DOI

Cabezas-Cruz A., Alberdi P., Ayllón N., Valdés J. J., Pierce R., Villar M., et al. . (2016). Anaplasma phagocytophilum increases the levels of histone modifying enzymes to inhibit cell apoptosis and facilitate pathogen infection in the tick vector Ixodes scapularis. Epigenetics 11, 303–319. 10.1080/15592294.2016.1163460 PubMed DOI PMC

Carlyon J. A., Chan W. T., Galán J., Roos D., Fikrig E. (2002). Repression of rac2 mRNA expression by Anaplasma phagocytophila is essential to the inhibition of superoxide production and bacterial proliferation. J. Immunol. 169, 7009–7018. 10.4049/jimmunol.169.12.7009 PubMed DOI

Cheeseman K., Weitzman J. B. (2015). Host-parasite interactions: an intimate epigenetic relationship. Cell. Microbiol. 17, 1121–1132. 10.1111/cmi.12471 PubMed DOI

Danchin É., Charmantier A., Champagne F. A., Mesoudi A., Pujol B., Blanchet S. (2011). Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nat. Rev. Genet. 12, 475–486. 10.1038/nrg3028 PubMed DOI

de la Fuente J., Estrada-Peña A., Cabezas-Cruz A., Kocan K. M. (2016c). Anaplasma phagocytophilum uses common strategies for infection of ticks and vertebrate hosts. Trends Microbiol. 24, 173–180. 10.1016/j.tim.2015.12.001 PubMed DOI

de la Fuente J., Estrada-Peña A., Venzal J. M., Kocan K. M., Sonenshine D. E. (2008). Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci. 13, 6938–6946. 10.2741/3200 PubMed DOI

de la Fuente J., Villar M., Cabezas-Cruz A., Estrada-Peña A., Ayllón N., Alberdi P. (2016b). Tick-host-pathogen interactions: conflict and cooperation. PLoS Pathog. 12:e1005488. 10.1371/journal.ppat.1005488 PubMed DOI PMC

de la Fuente J., Waterhouse R. M., Sonenshine D. E., Roe R. M., Ribeiro J. M., Sattelle D. B., et al. . (2016a). Tick genome assembled: new opportunities for research on tick-host-pathogen interactions. Front. Cell. Infect. Microbiol. 6:103. 10.3389/fcimb.2016.00103 PubMed DOI PMC

Dumler J. S., Sinclair S. H., Pappas-Brown V., Shetty A. C. (2016). Genome-Wide Anaplasma phagocytophilum AnkA-DNA interactions are enriched in intergenic regions and gene promoters and correlate with infection-induced differential gene expression. Front. Cell. Infect. Microbiol. 6:97. 10.3389/fcimb.2016.00097 PubMed DOI PMC

Eisen R. J., Eisen L., Beard C. B. (2016). County-Scale Distribution of Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the Continental United States. J. Med. Entomol. 53, 349–386. 10.1093/jme/tjv237 PubMed DOI PMC

Estrada-Peña A., de la Fuente J., Ostfeld R. S., Cabezas-Cruz A. (2015). Interactions between tick and transmitted pathogens evolved to minimise competition through nested and coherent networks. Sci. Rep. 5:10361. 10.1038/srep10361 PubMed DOI PMC

Estrada-Peña A., Sprong H., Cabezas-Cruz A., de la Fuente J., Ramo A., Coipan E. C. (2016). Nested coevolutionary networks shape the ecological relationships of ticks, hosts, and the Lyme disease bacteria of the Borrelia burgdorferi (s.l.) complex. Parasit. Vectors 9, 517. 10.1186/s13071-016-1803-z PubMed DOI PMC

Garcia-Garcia J. C., Barat N. C., Trembley S. J., Dumler J. S. (2009a). Epigenetic silencing of host cell defense genes enhances intracellular survival of the rickettsial pathogen Anaplasma phagocytophilum. PLoS Pathog. 5:e1000488. 10.1371/journal.ppat.1000488 PubMed DOI PMC

Garcia-Garcia J. C., Rennoll-Bankert K. E., Pelly S., Milstone A. M., Dumler J. S. (2009b). Silencing of host cell CYBB gene expression by the nuclear effector AnkA of the intracellular pathogen Anaplasma phagocytophilum. Infect. Immun. 77, 2385–2391. 10.1128/IAI.00023-09 PubMed DOI PMC

Gómez-Díaz E., Jordà M., Peinado M. A., Rivero A. (2012). Epigenetics of host-pathogen interactions: the road ahead and the road behind. PLoS Pathog. 8:e1003007. 10.1371/journal.ppat.1003007 PubMed DOI PMC

Gulia-Nuss M., Nuss A. B., Meyer J. M., Sonenshine D. E., Roe R. M., Waterhouse R. M., et al. . (2016). Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat. Commun. 7:10507. 10.1038/ncomms10507 PubMed DOI PMC

Herrmann C., Gern L. (2010). Survival of Ixodes ricinus (Acari: Ixodidae) under challenging conditions of temperature and humidity is influenced by Borrelia burgdorferi sensu lato infection. J. Med. Entomol. 47, 1196–1204. 10.1603/ME10111 PubMed DOI

Herrmann C., Gern L. (2012). Do the level of energy reserves, hydration status and Borrelia infection influence walking by Ixodes ricinus (Acari: Ixodidae) ticks? Parasitology 139, 330–337. 10.1017/S0031182011002095 PubMed DOI

Herrmann C., Gern L. (2015). Search for blood or water is influenced by Borrelia burgdorferi in Ixodes ricinus. Parasit. Vectors 8:6. 10.1186/s13071-014-0526-2 PubMed DOI PMC

Lee H. C., Kioi M., Han J., Puri R. K., Goodman J. L. (2008). Anaplasma phagocytophilum-induced gene expression in both human neutrophils and HL-60 cells. Genomics 92, 144–151. 10.1016/j.ygeno.2008.05.005 PubMed DOI

Lefcort H., Durden L. A. (1996). The effect of infection with Lyme disease spirochetes (Borrelia burgdorferi) on the phototaxis, activity, and questing height of the tick vector Ixodes scapularis. Parasitology 113, 97–103. PubMed

Lin M., Kikuchi T., Brewer H. M., Norbeck A. D., Rikihisa Y. (2011). Global proteomic analysis of two tick-borne emerging zoonotic agents: Anaplasma phagocytophilum and Ehrlichia chaffeensis. Front. Microbiol. 2:24. 10.3389/fmicb.2011.00024 PubMed DOI PMC

Lina T. T., Farris T., Luo T., Mitra S., Zhu B., McBride J. W. (2016). Hacker within! Ehrlichia chaffeensis effector driven phagocyte reprogramming strategy. Front. Cell. Infect. Microbiol. 6:58. 10.3389/fcimb.2016.00058 PubMed DOI PMC

Liu L., Dai J., Zhao Y. O., Narasimhan S., Yang Y., Zhang L., et al. . (2012). Ixodes scapularis JAK-STAT pathway regulates tick antimicrobial peptides, thereby controlling the agent of human granulocytic anaplasmosis. J. Infect. Dis. 206, 1233–1241. 10.1093/infdis/jis484 PubMed DOI PMC

Miura K., Rikihisa Y. (2009). Liver transcriptome profiles associated with strain-specific Ehrlichia chaffeensis-induced hepatitis in SCID mice. Infect. Immun. 77, 245–254. 10.1128/IAI.00979-08 PubMed DOI PMC

Neelakanta G., Sultana H., Fish D., Anderson J. F., Fikrig E. (2010). Anaplasma phagocytophilum induces Ixodes scapularis ticks to express an antifreeze glycoprotein gene that enhances their survival in the cold. J. Clin. Invest. 120, 3179–3190. 10.1172/JCI42868 PubMed DOI PMC

Pedra J. H., Sukumaran B., Carlyon J. A., Berliner N., Fikrig E. (2005). Modulation of NB4 promyelocytic leukemic cell machinery by Anaplasma phagocytophilum. Genomics 86, 365–377. 10.1016/j.ygeno.2005.05.008 PubMed DOI

Poulin R., Maure F. (2015). Host manipulation by parasites: a look back before moving forward. Trends. Parasitol. 31, 563–570. 10.1016/j.pt.2015.07.002 PubMed DOI

Poulin R., Thomas F. (2008). Epigenetic effects of infection on the phenotype of host offspring: parasites reaching across host generations. Oikos 117, 331–335. 10.1111/j.2007.0030-1299.16435.x DOI

Randolph S. E., Storey K. (1999). Impact of microclimate on immature tick-rodent host interactions (Acari: Ixodidae): implications for parasite transmission. J. Med. Entomol. 36, 741–748. PubMed

Rennoll-Bankert K. E., Garcia-Garcia J. C., Sinclair S. H., Dumler J. S. (2015). Chromatin-bound bacterial effector ankyrin A recruits histone deacetylase 1 and modifies host gene expression. Cell. Microbiol. 17, 1640–1652. 10.1111/cmi.12461 PubMed DOI PMC

Romashchenko A. V., Ratushnyak A. S., Zapara T. A., Tkachev S. E., Moshkin M. P. (2012). The correlation between tick (Ixodes persulcatus Sch.) questing behaviour and synganglion neuronal responses to odours. J. Insect. Physiol. 58, 903–910. 10.1016/j.jinsphys.2012.04.004 PubMed DOI

Sinclair S. H., Garcia-Garcia J. C., Dumler J. S. (2015). Bioinformatic and mass spectrometry identification of Anaplasma phagocytophilum proteins translocated into host cell nuclei. Front. Microbiol. 6:55. 10.3389/fmicb.2015.00055 PubMed DOI PMC

Sukumaran B., Carlyon J. A., Cai J. L., Berliner N., Fikrig E. (2005). Early transcriptional response of human neutrophils to Anaplasma phagocytophilum infection. Infect. Immun. 73, 8089–8099. 10.1128/IAI.73.12.8089-8099.2005 PubMed DOI PMC

Sultana H., Neelakanta G., Kantor F. S., Malawista S. E., Fish D., Montgomery R. R., et al. . (2010). Anaplasma phagocytophilum induces actin phosphorylation to selectively regulate gene transcription in Ixodes scapularis ticks. J. Exp. Med. 207, 1727–1743. 10.1084/jem.20100276 PubMed DOI PMC

Villar M., Ayllón N., Alberdi P., Moreno A., Moreno M., Tobes R., et al. . (2015). Integrated metabolomics, transcriptomics and proteomics identifies metabolic pathways affected by Anaplasma phagocytophilum infection in tick cells. Mol. Cell. Proteomics. 14, 3154–3172. 10.1074/mcp.M115.051938 PubMed DOI PMC

Weisheit S., Villar M., Tykalová H., Popara M., Loecherbach J., Watson M., et al. . (2015). Ixodes scapularis and Ixodes ricinus tick cell lines respond to infection with tick-borne encephalitis virus: transcriptomic and proteomic analysis. Parasit. Vectors 8:599. 10.1186/s13071-015-1210-x PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...