Tick-Pathogen Ensembles: Do Molecular Interactions Lead Ecological Innovation?
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28348982
PubMed Central
PMC5346557
DOI
10.3389/fcimb.2017.00074
Knihovny.cz E-zdroje
- Klíčová slova
- Anaplasma phagocytophilum, ecological adaptation, epigenetics, tick-pathogen interactions, transcriptional reprogramming,
- MeSH
- Anaplasma phagocytophilum MeSH
- biologická adaptace genetika fyziologie MeSH
- biologická evoluce MeSH
- ekologie * MeSH
- genetická transkripce genetika MeSH
- interakce hostitele a patogenu genetika MeSH
- klíšťata mikrobiologie MeSH
- klíště mikrobiologie MeSH
- molekulární evoluce MeSH
- regulace genové exprese genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Zobrazit více v PubMed
Alberdi P., Espinosa P. J., Cabezas-Cruz A., de la Fuente J. (2016). Anaplasma phagocytophilum manipulates host cell apoptosis by different mechanisms to establish infection. Vet. Sci. 3:15 10.3390/vetsci3030015 PubMed DOI PMC
Ayllón N., Villar M., Galindo R. C., Kocan K. M., Šíma R., López J. A., et al. . (2015). Systems biology of tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in the tick vector Ixodes scapularis. PLoS Genet. 11:e1005120. 10.1371/journal.pgen.1005120 PubMed DOI PMC
Belova O. A., Burenkova L. A., Karganova G. G. (2012). Different tick-borne encephalitis virus (TBEV) prevalences in unfed versus partially engorged ixodid ticks - evidence of virus replication and changes in tick behavior. Ticks Tick Borne Dis. 3, 240–246. 10.1016/j.ttbdis.2012.05.005 PubMed DOI
Bierne H., Cossart P. (2012). When bacteria target the nucleus: the emerging family of nucleomodulins. Cell. Microbiol. 14, 622–633. 10.1111/j.1462-5822.2012.01758.x PubMed DOI
Borjesson D. L., Kobayashi S. D., Whitney A. R., Voyich J. M., Argue C. M., Deleo F. R. (2005). Insights into pathogen immune evasion mechanisms: Anaplasma phagocytophilum fails to induce an apoptosis differentiation program in human neutrophils. J. Immunol. 174, 6364–6372. 10.4049/jimmunol.174.10.6364 PubMed DOI
Bouquet J., Soloski M. J., Swei A., Cheadle C., Federman S., Billaud J. N., et al. . (2016). Longitudinal transcriptome analysis reveals a sustained differential gene expression signature in patients treated for acute lyme disease. MBio 7, e00100–e00116. 10.1128/mBio.00100-16 PubMed DOI PMC
Busby A. T., Ayllón N., Kocan K. M., Blouin E. F., de la Fuente G., Galindo R. C., et al. . (2012). Expression of heat shock proteins and subolesin affects stress responses, Anaplasma phagocytophilum infection and questing behaviour in the tick, Ixodes scapularis. Med. Vet. Entomol. 26, 92–102. 10.1111/j.1365-2915.2011.00973.x PubMed DOI
Cabezas-Cruz A., Alberdi P., Ayllón N., Valdés J. J., Pierce R., Villar M., et al. . (2016). Anaplasma phagocytophilum increases the levels of histone modifying enzymes to inhibit cell apoptosis and facilitate pathogen infection in the tick vector Ixodes scapularis. Epigenetics 11, 303–319. 10.1080/15592294.2016.1163460 PubMed DOI PMC
Carlyon J. A., Chan W. T., Galán J., Roos D., Fikrig E. (2002). Repression of rac2 mRNA expression by Anaplasma phagocytophila is essential to the inhibition of superoxide production and bacterial proliferation. J. Immunol. 169, 7009–7018. 10.4049/jimmunol.169.12.7009 PubMed DOI
Cheeseman K., Weitzman J. B. (2015). Host-parasite interactions: an intimate epigenetic relationship. Cell. Microbiol. 17, 1121–1132. 10.1111/cmi.12471 PubMed DOI
Danchin É., Charmantier A., Champagne F. A., Mesoudi A., Pujol B., Blanchet S. (2011). Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nat. Rev. Genet. 12, 475–486. 10.1038/nrg3028 PubMed DOI
de la Fuente J., Estrada-Peña A., Cabezas-Cruz A., Kocan K. M. (2016c). Anaplasma phagocytophilum uses common strategies for infection of ticks and vertebrate hosts. Trends Microbiol. 24, 173–180. 10.1016/j.tim.2015.12.001 PubMed DOI
de la Fuente J., Estrada-Peña A., Venzal J. M., Kocan K. M., Sonenshine D. E. (2008). Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci. 13, 6938–6946. 10.2741/3200 PubMed DOI
de la Fuente J., Villar M., Cabezas-Cruz A., Estrada-Peña A., Ayllón N., Alberdi P. (2016b). Tick-host-pathogen interactions: conflict and cooperation. PLoS Pathog. 12:e1005488. 10.1371/journal.ppat.1005488 PubMed DOI PMC
de la Fuente J., Waterhouse R. M., Sonenshine D. E., Roe R. M., Ribeiro J. M., Sattelle D. B., et al. . (2016a). Tick genome assembled: new opportunities for research on tick-host-pathogen interactions. Front. Cell. Infect. Microbiol. 6:103. 10.3389/fcimb.2016.00103 PubMed DOI PMC
Dumler J. S., Sinclair S. H., Pappas-Brown V., Shetty A. C. (2016). Genome-Wide Anaplasma phagocytophilum AnkA-DNA interactions are enriched in intergenic regions and gene promoters and correlate with infection-induced differential gene expression. Front. Cell. Infect. Microbiol. 6:97. 10.3389/fcimb.2016.00097 PubMed DOI PMC
Eisen R. J., Eisen L., Beard C. B. (2016). County-Scale Distribution of Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the Continental United States. J. Med. Entomol. 53, 349–386. 10.1093/jme/tjv237 PubMed DOI PMC
Estrada-Peña A., de la Fuente J., Ostfeld R. S., Cabezas-Cruz A. (2015). Interactions between tick and transmitted pathogens evolved to minimise competition through nested and coherent networks. Sci. Rep. 5:10361. 10.1038/srep10361 PubMed DOI PMC
Estrada-Peña A., Sprong H., Cabezas-Cruz A., de la Fuente J., Ramo A., Coipan E. C. (2016). Nested coevolutionary networks shape the ecological relationships of ticks, hosts, and the Lyme disease bacteria of the Borrelia burgdorferi (s.l.) complex. Parasit. Vectors 9, 517. 10.1186/s13071-016-1803-z PubMed DOI PMC
Garcia-Garcia J. C., Barat N. C., Trembley S. J., Dumler J. S. (2009a). Epigenetic silencing of host cell defense genes enhances intracellular survival of the rickettsial pathogen Anaplasma phagocytophilum. PLoS Pathog. 5:e1000488. 10.1371/journal.ppat.1000488 PubMed DOI PMC
Garcia-Garcia J. C., Rennoll-Bankert K. E., Pelly S., Milstone A. M., Dumler J. S. (2009b). Silencing of host cell CYBB gene expression by the nuclear effector AnkA of the intracellular pathogen Anaplasma phagocytophilum. Infect. Immun. 77, 2385–2391. 10.1128/IAI.00023-09 PubMed DOI PMC
Gómez-Díaz E., Jordà M., Peinado M. A., Rivero A. (2012). Epigenetics of host-pathogen interactions: the road ahead and the road behind. PLoS Pathog. 8:e1003007. 10.1371/journal.ppat.1003007 PubMed DOI PMC
Gulia-Nuss M., Nuss A. B., Meyer J. M., Sonenshine D. E., Roe R. M., Waterhouse R. M., et al. . (2016). Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat. Commun. 7:10507. 10.1038/ncomms10507 PubMed DOI PMC
Herrmann C., Gern L. (2010). Survival of Ixodes ricinus (Acari: Ixodidae) under challenging conditions of temperature and humidity is influenced by Borrelia burgdorferi sensu lato infection. J. Med. Entomol. 47, 1196–1204. 10.1603/ME10111 PubMed DOI
Herrmann C., Gern L. (2012). Do the level of energy reserves, hydration status and Borrelia infection influence walking by Ixodes ricinus (Acari: Ixodidae) ticks? Parasitology 139, 330–337. 10.1017/S0031182011002095 PubMed DOI
Herrmann C., Gern L. (2015). Search for blood or water is influenced by Borrelia burgdorferi in Ixodes ricinus. Parasit. Vectors 8:6. 10.1186/s13071-014-0526-2 PubMed DOI PMC
Lee H. C., Kioi M., Han J., Puri R. K., Goodman J. L. (2008). Anaplasma phagocytophilum-induced gene expression in both human neutrophils and HL-60 cells. Genomics 92, 144–151. 10.1016/j.ygeno.2008.05.005 PubMed DOI
Lefcort H., Durden L. A. (1996). The effect of infection with Lyme disease spirochetes (Borrelia burgdorferi) on the phototaxis, activity, and questing height of the tick vector Ixodes scapularis. Parasitology 113, 97–103. PubMed
Lin M., Kikuchi T., Brewer H. M., Norbeck A. D., Rikihisa Y. (2011). Global proteomic analysis of two tick-borne emerging zoonotic agents: Anaplasma phagocytophilum and Ehrlichia chaffeensis. Front. Microbiol. 2:24. 10.3389/fmicb.2011.00024 PubMed DOI PMC
Lina T. T., Farris T., Luo T., Mitra S., Zhu B., McBride J. W. (2016). Hacker within! Ehrlichia chaffeensis effector driven phagocyte reprogramming strategy. Front. Cell. Infect. Microbiol. 6:58. 10.3389/fcimb.2016.00058 PubMed DOI PMC
Liu L., Dai J., Zhao Y. O., Narasimhan S., Yang Y., Zhang L., et al. . (2012). Ixodes scapularis JAK-STAT pathway regulates tick antimicrobial peptides, thereby controlling the agent of human granulocytic anaplasmosis. J. Infect. Dis. 206, 1233–1241. 10.1093/infdis/jis484 PubMed DOI PMC
Miura K., Rikihisa Y. (2009). Liver transcriptome profiles associated with strain-specific Ehrlichia chaffeensis-induced hepatitis in SCID mice. Infect. Immun. 77, 245–254. 10.1128/IAI.00979-08 PubMed DOI PMC
Neelakanta G., Sultana H., Fish D., Anderson J. F., Fikrig E. (2010). Anaplasma phagocytophilum induces Ixodes scapularis ticks to express an antifreeze glycoprotein gene that enhances their survival in the cold. J. Clin. Invest. 120, 3179–3190. 10.1172/JCI42868 PubMed DOI PMC
Pedra J. H., Sukumaran B., Carlyon J. A., Berliner N., Fikrig E. (2005). Modulation of NB4 promyelocytic leukemic cell machinery by Anaplasma phagocytophilum. Genomics 86, 365–377. 10.1016/j.ygeno.2005.05.008 PubMed DOI
Poulin R., Maure F. (2015). Host manipulation by parasites: a look back before moving forward. Trends. Parasitol. 31, 563–570. 10.1016/j.pt.2015.07.002 PubMed DOI
Poulin R., Thomas F. (2008). Epigenetic effects of infection on the phenotype of host offspring: parasites reaching across host generations. Oikos 117, 331–335. 10.1111/j.2007.0030-1299.16435.x DOI
Randolph S. E., Storey K. (1999). Impact of microclimate on immature tick-rodent host interactions (Acari: Ixodidae): implications for parasite transmission. J. Med. Entomol. 36, 741–748. PubMed
Rennoll-Bankert K. E., Garcia-Garcia J. C., Sinclair S. H., Dumler J. S. (2015). Chromatin-bound bacterial effector ankyrin A recruits histone deacetylase 1 and modifies host gene expression. Cell. Microbiol. 17, 1640–1652. 10.1111/cmi.12461 PubMed DOI PMC
Romashchenko A. V., Ratushnyak A. S., Zapara T. A., Tkachev S. E., Moshkin M. P. (2012). The correlation between tick (Ixodes persulcatus Sch.) questing behaviour and synganglion neuronal responses to odours. J. Insect. Physiol. 58, 903–910. 10.1016/j.jinsphys.2012.04.004 PubMed DOI
Sinclair S. H., Garcia-Garcia J. C., Dumler J. S. (2015). Bioinformatic and mass spectrometry identification of Anaplasma phagocytophilum proteins translocated into host cell nuclei. Front. Microbiol. 6:55. 10.3389/fmicb.2015.00055 PubMed DOI PMC
Sukumaran B., Carlyon J. A., Cai J. L., Berliner N., Fikrig E. (2005). Early transcriptional response of human neutrophils to Anaplasma phagocytophilum infection. Infect. Immun. 73, 8089–8099. 10.1128/IAI.73.12.8089-8099.2005 PubMed DOI PMC
Sultana H., Neelakanta G., Kantor F. S., Malawista S. E., Fish D., Montgomery R. R., et al. . (2010). Anaplasma phagocytophilum induces actin phosphorylation to selectively regulate gene transcription in Ixodes scapularis ticks. J. Exp. Med. 207, 1727–1743. 10.1084/jem.20100276 PubMed DOI PMC
Villar M., Ayllón N., Alberdi P., Moreno A., Moreno M., Tobes R., et al. . (2015). Integrated metabolomics, transcriptomics and proteomics identifies metabolic pathways affected by Anaplasma phagocytophilum infection in tick cells. Mol. Cell. Proteomics. 14, 3154–3172. 10.1074/mcp.M115.051938 PubMed DOI PMC
Weisheit S., Villar M., Tykalová H., Popara M., Loecherbach J., Watson M., et al. . (2015). Ixodes scapularis and Ixodes ricinus tick cell lines respond to infection with tick-borne encephalitis virus: transcriptomic and proteomic analysis. Parasit. Vectors 8:599. 10.1186/s13071-015-1210-x PubMed DOI PMC
Functional Redundancy and Ecological Innovation Shape the Circulation of Tick-Transmitted Pathogens