Breaking the cipher: ant eavesdropping on the variational trail pheromone of its termite prey

. 2017 Apr 26 ; 284 (1853) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28446695

Predators may eavesdrop on their prey using innate signals of varying nature. In regards to social prey, most of the prey signals are derived from social communication and may therefore be highly complex. The most efficient predators select signals that provide the highest benefits. Here, we showed the use of eusocial prey signals by the termite-raiding ant Odontoponera transversaO. transversa selected the trail pheromone of termites as kairomone in several species of fungus-growing termites (Termitidae: Macrotermitinae: Odontotermes yunnanensis, Macrotermes yunnanensis, Ancistrotermes dimorphus). The most commonly predated termite, O. yunnanensis, was able to regulate the trail pheromone component ratios during its foraging activity. The ratio of the two trail pheromone compounds was correlated with the number of termites in the foraging party. (3Z)-Dodec-3-en-1-ol (DOE) was the dominant trail pheromone component in the initial foraging stages when fewer termites were present. Once a trail was established, (3Z,6Z)-dodeca-3,6-dien-1-ol (DDE) became the major recruitment component in the trail pheromone and enabled mass recruitment of nest-mates to the food source. Although the ants could perceive both components, they revealed stronger behavioural responses to the recruitment component, DDE, than to the common major component, DOE. In other words, the ants use the trail pheromone information as an indication of suitable prey abundance, and regulate their behavioural responses based on the changing trail pheromone component. The eavesdropping behaviour in ants therefore leads to an arms race between predator and prey where the species specific production of trail pheromones in termites is targeted by predatory ant species.

Zobrazit více v PubMed

Krebs JR, Davies NB. 1997. Behavioural ecology: an evolutionary approach. Oxford, UK: Blackwell Science.

Lichtenberg EM, Zivin JG, Hrncir M, Nieh JC. 2014. Eavesdropping selects for conspicuous signals. Curr. Biol. 24, 598–599. (10.1016/j.cub.2014.05.062) PubMed DOI

Zuk M, Kolluru GR. 1998. Exploitation of sexual signals by predators and parasitoids. Q. Rev. Biol. 73, 415–438. (10.1086/420412) DOI

Magnhagen C. 1991. Predation risk as a cost of reproduction. Trends Ecol. Evol. 6, 183–186. (10.1016/0169-5347(91)90210-O) PubMed DOI

Hughes NK, Kelley JL, Banks PB. 2012. Dangerous liaisons: the predation risks of receiving social signals. Ecol. Lett. 15, 1326–1339. (10.1111/j.1461-0248.2012.01856.x) PubMed DOI

Brodmann J, Twele R, Francke W, Luo Y-B, Song X-Q, Ayasse M. 2009. Orchid mimics honey bee alarm pheromone in order to attract hornets for pollination. Curr. Biol. 19, 1368–1372. (10.1016/j.cub.2009.06.067) PubMed DOI

Couto A, Monceau K, Bonnard O, Thiery D, Sandoz JC. 2014. Olfactory attraction of the hornet Vespa velutina to honeybee colony odors and pheromones. PLoS ONE 9, e11594 (10.1371/journal.pone.0115943) PubMed DOI PMC

Longhurst C, Howse PE. 1978. The use of kairomones by Megaponera foetens (Fab.) (Hymenoptera: Formicidae) in the detection of its termite prey. Anim. Behav. 26, 1213–1218. (10.1016/0003-3472(78)90111-2) DOI

Yusuf AA, Crewe RM, Pirk CWW. 2014. Olfactory detection of prey by the termite-raiding ant Pachycondyla analis. J. Insect Sci. 14, 53 (10.1093/jis/14.1.53) PubMed DOI PMC

Nguyen TT, Akino T. 2012. Worker aggression of ant Lasius japonicus enhanced by termite soldier-specific secretion as an alarm pheromone of Reticulitermes speratus. Entomol. Sci. 15, 422–429. (10.1111/j.1479-8298.2012.00534.x) DOI

Allan RA, Elgar MA, Capon RJ. 1996. Exploitation of an ant chemical alarm signal by the zodariid spider Habronestes bradleyi Walckenaer. Proc. R. Soc. Lond. B 263, 69–73. (10.1098/rspb.1996.0012) DOI

Halfwerk W, Jones PL, Taylor RC, Ryan MJ, Page RA. 2014. Risky ripples allow bats and frogs to eavesdrop on a multisensory sexual display. Science 343, 413–416. (10.1126/science.1244812) PubMed DOI

Page RA, Ryan MJ. 2008. The effect of signal complexity on localization performance in bats that localize frog calls. Anim. Behav. 76, 761–769. (10.1016/j.anbehav.2008.05.006) DOI

Page RA, Schnelle T, Kalko EKV, Bunge T, Bernal XE. 2012. Sequential assessment of prey through the use of multiple sensory cues by an eavesdropping bat. Naturwissenschaften 99, 505–509. (10.1007/s00114-012-0920-6) PubMed DOI

Richard FJ, Hunt JH. 2013. Intracolony chemical communication in social insects. Insectes Soc. 60, 275–291. (10.1007/s00040-013-0306-6) DOI

Costa-Leonardo AM, Haifig I. 2014. Termite communication during different behavioral activities. In Biocommunication of animals (ed. Witzany G.), pp. 161–190. Dordrecht, The Netherlands: Springer.

Leonhardt SD, Menzel F, Nehring V, Schmitt T. 2016. Ecology and evolution of communication in social insects. Cell 164, 1277–1287. (10.1016/j.cell.2016.01.035) PubMed DOI

Fewell JH. 2003. Social insect networks. Science 301, 1867–1870. (10.1126/science.1088945) PubMed DOI

Van Oystaeyen A, et al. 2014. Conserved class of queen pheromones stops social insect workers from reproducing. Science 343, 287–290. (10.1126/science.1244899) PubMed DOI

Hunt JH, Richard FJ. 2013. Intracolony vibroacoustic communication in social insects. Insectes Soc. 60, 403–417. (10.1007/s00040-013-0311-9) DOI

Wood WF, Truckenbrodt W, Meinwald J. 1975. Chemistry of the defensive secretion from the African termite Odontotermes badius. Ann. Entomol. Soc. Am. 68, 359–360. (10.1093/aesa/68.2.359) DOI

Šobotník J, Jirošová A, Hanus R. 2010. Chemical warfare in termites. J. Insect Physiol. 56, 1012–1021. (10.1016/j.jinsphys.2010.02.012) PubMed DOI

Prestwich GD, Bierl BA, Devilbiss ED, Chaudhury MFB. 1977. Soldier frontal glands of the termite Macrotermes subhyalinus: morphology, chemical composition, and use in defense. J. Chem. Ecol. 3, 579–590. (10.1007/BF00989078) DOI

Deligne J, Quennedey A, Blum MS. 1981. The enemies and defense mechanisms of termites. In Social insects, vol. 1 (ed. Hermann HR.), pp. 1–76. London: Global, Academic Press.

Jackson BD, Morgan ED. 1993. Insect chemical communication: pheromones and exocrine glands of ants. Chemoecology 4, 125–144. (10.1007/BF01256548) DOI

Sasaki T, Hölldobler B, Millar JG, Pratt SC. 2014. A context-dependent alarm signal in the ant Temnothorax rugatulus. J. Exp. Biol. 217, 3229 (10.1242/jeb.106849) PubMed DOI

Czaczkes TJ, Gruter C, Ratnieks FLW. 2015. Trail pheromones: an integrative view of their role in social insect colony organization. Annu. Rev. Entomol. 60, 581–599. (10.1146/annurev-ento-010814-020627) PubMed DOI

Bordereau C, Pasteels JM. 2011. Pheromones and chemical ecology of dispersal and foraging in termites. In Biology of termites: a modern synthesis (eds Bignell ED, Roisin Y, Lo N), pp. 279–320. Dordrecht, The Netherlands: Springer.

Wen P, Ji BZ, Sillam-Dussès D. 2014. Trail communication regulated by two trail pheromone components in the fungus-growing termite Odontotermes formosanus (Shiraki). PLoS ONE 9, e90906 (10.1371/journal.pone.0090906) PubMed DOI PMC

Jaffe K, Issa S, Sainz-Borgo C. 2012. Chemical recruitment for foraging in ants (Formicidae) and termites (Isoptera): a revealing comparison. Psyche 2012, 694910.

Kirchner WH, Broecker I, Tautz J. 1994. Vibrational alarm communication in the damp-wood termite Zootermopsis nevadensis. Physiol. Entomol. 19, 187–190. (10.1111/j.1365-3032.1994.tb01041.x) DOI

van Wilgenburg E, Felden A, Choe D-H, Sulc R, Luo J, Shea KJ, Elgar MA, Tsutsui ND. 2011. Learning and discrimination of cuticular hydrocarbons in a social insect. Biol. Lett. 8, 17–20. (10.1098/rsbl.2011.0643) PubMed DOI PMC

Evans TA, Inta R, Lai JCS, Prueger S, Foo NW, Fu EW, Lenz M. 2009. Termites eavesdrop to avoid competitors. Proc. R. Soc. B 276, 4035–4041. (10.1098/rspb.2009.1147) PubMed DOI PMC

Wen P, Mo J, Lu C, Tan K, Šobotník J, Sillam-Dussès D. 2015. Sex-pairing pheromone of Ancistrotermes dimorphus (Isoptera: Macrotermitinae). J. Insect Physiol. 83, 8–14. (10.1016/j.jinsphys.2015.11.006) PubMed DOI

Kern F, Bestmann HJ. 1993. Antennal electrophysiological responsiveness of the ponerine ant Leptogenys diminuta to trail and recruitment pheromones and its structure analogs. Naturwissenschaften 80, 424–427. (10.1007/BF01168340) DOI

Wilson EO. 1975. Sociobiology: the new synthesis. Cambridge, MA: Belknap Press of Harvard University Press.

Billen J, Šobotník J. 2015. Insect exocrine glands. Arthropod Struct. Dev. 44, 399–400. (10.1016/j.asd.2015.08.010) PubMed DOI

Šobotník J, Hubert J. 2003. The morphology of the exocrine glands of Prorhinotermes simplex (Isoptera: Rhinotermitidae) and their ontogenetical aspects. Acta Soc. Zool. Bohem. 67, 83–98.

Sillam-Dussès D. 2010. Trail pheromones and sex pheromones in termites. Hauppauge, NY: Novinka, Nova Science Publishers.

Wen P, Ji B-Z, Liu S-W, Liu C, Sillam-Dussès D. 2012. Sex-pairing pheromone in the Asian termite pest species Odontotermes formosanus. J. Chem. Ecol. 38, 566–575. (10.1007/s10886-012-0111-0) PubMed DOI

Robert A, Peppuy A, Sémon E, Boyer FD, Lacey MJ, Bordereau C. 2004. A new C12 alcohol identified as a sex pheromone and a trail-following pheromone in termites: the diene (Z,Z)-dodeca-3,6-dien-1-ol. Naturwissenschaften 91, 34–39. (10.1007/s00114-003-0481-9) PubMed DOI

Lewis WJ, Nordlund DA, Gueldner RC, Teal PEA, Tumlinson JH. 1982. Kairomones and their use for management of entomophagous insects. J. Chem. Ecol. 8, 1323–1331. (10.1007/BF00987765) PubMed DOI

Redford KH, Dorea JG. 1984. The nutritional value of invertebrates with emphasis on ants and termites as food for mammals. J. Zool. 203, 385–395. (10.1111/j.1469-7998.1984.tb02339.x) DOI

Hölldobler B, Wilson EO. 1990. The ants. Cambridge, MA: Belknap Press of Harvard University Press.

Noirot C, Darlington JPEC. 2000. Termite nests: architecture, regulation and defence. In Termites: evolution, sociality, symbioses, ecology (eds Abe T, Bignell DE, Higashi M), pp. 121–139. Dordrecht, The Netherlands: Springer.

Oberst S, Bann G, Lai JCS, Evans TA. 2017. Cryptic termites avoid predatory ants by eavesdropping on vibrational cues from their footsteps. Ecol. Lett. 20, 212–221. (10.1111/ele.12727) PubMed DOI

Wen X-L, Wen P, Dahlsjö CAL, Sillam-Dussès D, Šobotník J. 2017. Data from: Breaking the cipher: ant eavesdropping on the variational trail pheromone of its termite prey. Dryad Digital Repository. (10.5061/dryad.5j54t) PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...