No measurable adverse effects of Lassa, Morogoro and Gairo arenaviruses on their rodent reservoir host in natural conditions
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
28449693
PubMed Central
PMC5408478
DOI
10.1186/s13071-017-2146-0
PII: 10.1186/s13071-017-2146-0
Knihovny.cz E-zdroje
- Klíčová slova
- Arenavirus, Gairo virus, Host-pathogen interaction, Lassa virus, Mastomys natalensis, Morogoro virus, Reservoir host, Rodent-borne disease,
- MeSH
- Arenavirus izolace a purifikace MeSH
- infekce přenášené vektorem * MeSH
- infekce viry z čeledi Arenaviridae patologie veterinární virologie MeSH
- Murinae fyziologie virologie MeSH
- přenašečství patologie veterinární virologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Guinea MeSH
- Tanzanie MeSH
BACKGROUND: In order to optimize net transmission success, parasites are hypothesized to evolve towards causing minimal damage to their reservoir host while obtaining high shedding rates. For many parasite species however this paradigm has not been tested, and conflicting results have been found regarding the effect of arenaviruses on their rodent host species. The rodent Mastomys natalensis is the natural reservoir host of several arenaviruses, including Lassa virus that is known to cause Lassa haemorrhagic fever in humans. Here, we examined the effect of three arenaviruses (Gairo, Morogoro and Lassa virus) on four parameters of wild-caught Mastomys natalensis: body mass, head-body length, sexual maturity and fertility. After correcting for the effect of age, we compared these parameters between arenavirus-positive (arenavirus RNA or antibody) and negative animals using data from different field studies in Guinea (Lassa virus) and Tanzania (Morogoro and Gairo viruses). RESULTS: Although the sample sizes of our studies (1297, 749 and 259 animals respectively) were large enough to statistically detect small differences in body conditions, we did not observe any adverse effects of these viruses on Mastomys natalensis. We did find that sexual maturity was significantly positively related with Lassa virus antibody presence until a certain age, and with Gairo virus antibody presence in general. Gairo virus antibody-positive animals were also significantly heavier and larger than antibody-free animals. CONCLUSION: Together, these results suggest that the pathogenicity of arenaviruses is not severe in M. natalensis, which is likely to be an adaptation of these viruses to optimize transmission success. They also suggest that sexual behaviour might increase the probability of M. natalensis to become infected with arenaviruses.
Bernhard Nocht Institute for Tropical Medicine Hamburg Germany
Department of Ecology and Evolutionary Biology University of Arizona Tucson USA
Department of Ecology and Evolutionary Biology University of California Los Angeles USA
Evolutionary Ecology Group University of Antwerp Antwerp Belgium
Projet des Fièvre Hémorragiques en Guinée Hôpital Donka Conakry Guinea
Zobrazit více v PubMed
Monath TP, Newhouse VF, Kemp GE, Setzer HWCA. Lassa virus isolation from Mastomys natalensis rodents during an epidemic in Sierra Leone. Science. 1974;185:263–5. doi: 10.1126/science.185.4147.263. PubMed DOI
Gryseels S, Rieger T, Oestereich L, Cuypers B, Borremans B, Makundi R, et al. Gairo virus, a novel arenavirus of the widespread Mastomys natalensis: Genetically divergent, but ecologically similar to Lassa and Morogoro viruses. Virology. 2015;476:249–56. doi: 10.1016/j.virol.2014.12.011. PubMed DOI
Gryseels S, Baird S, Borremans B, Makundi R, Leirs H, Goüy de Bellocq J. When viruses don’t go viral: the importance of host phylogeographic structure in the spatial spread of arenaviruses. PLoS Pathog. 2017;13:1. doi: 10.1371/journal.ppat.1006073. PubMed DOI PMC
Olayemi A, Obadare A, Oyeyiola A, Igbokwe J, Fasogbon A, Igbahenah F, et al. Arenavirus diversity and phylogeography of Mastomys natalensis rodents, Nigeria. Emerg Infect Dis. 2016;22:694–7. doi: 10.3201/eid2204.150155. PubMed DOI PMC
Günther S, Hoofd G, Charrel R, Röser C, Becker-Ziaja B, Lloyd G, et al. Mopeia virus-related arenavirus in Natal multimammate mice, Morogoro, Tanzania. Emerg Infect Dis. 2009;15:2008–12. doi: 10.3201/eid1512.090864. PubMed DOI PMC
Wulff H, McIntosh BM, Hamner DB, Johnson KM. Isolation of an arenavirus closely related to Lassa virus from Mastomys natalensis in south-east Africa. Bull World Health Organ. 1977;55:441–4. PubMed PMC
Ishii A, Thomas Y, Moonga L, Nakamura I, Ohnuma A, Hang’ombe B, et al. Novel arenavirus, Zambia. Emerg Infect Dis. 2011;17:1921–4. doi: 10.3201/eid1710.10452. PubMed DOI PMC
McCormick JB. Lassa fever. In: Saluzzo JF, Dodet B, editors. Emergence and Control of Rodent-Borne Viral Diseases. Berlin: Elsevier; 1999. pp. 177–195.
Monath TP. Lassa fever: New issues raised by field studies in West Africa. J Infect Dis. 1987;155:433–6. doi: 10.1093/infdis/155.3.433. PubMed DOI
World Health Organization: WHO fact sheet. http://www.who.int/csr/disease/lassafever/en/). Accessed 23 Apr 2017.
Walker DH, Murphy FA. Pathology and pathogenesis of arenavirus infections. Curr Top Microbiol Immunol. 1987;133:89–113. PubMed
Günther S, Lenz O. Lassa virus. Crit Rev Clin Lab Sci. 2004;41:339–90. doi: 10.1080/10408360490497456. PubMed DOI
Anderson RM, May R. Population biology of infectious diseases: Part II. Nature. 1979;280:361–7. doi: 10.1038/280361a0. PubMed DOI
Anderson RM, May RM. Coevolution of host and parasites. Parasitology. 1982;85:411–26. doi: 10.1017/S0031182000055360. PubMed DOI
Frank S. Models of parasite virulence. Q Rev Biol. 1996;71:37–78. doi: 10.1086/419267. PubMed DOI
Alizon S, Hurford A, Mideo N, Van Baalen M. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J Evol Biol. 2009;22:245–59. doi: 10.1111/j.1420-9101.2008.01658.x. PubMed DOI
Knell RJ. Syphilis in renaissance Europe: rapid evolution of an introduced sexually transmitted disease? Proc Biol Sci. 2004;271(Suppl):S174–6. doi: 10.1098/rsbl.2003.0131. PubMed DOI PMC
Dwyer G, Levin S, Buttel L. A simulation model of the population dynamics and evolution of myxomatosis. Ecol. Monogr. 1990;60(4):423–47
Kerber R, Rieger T, Busch C, Flatz L, Pinschewer DD, Kümmerer BM, et al. Cross-species analysis of the replication complex of Old World arenaviruses reveals two nucleoprotein sites involved in L protein function. J Virol. 2011;85:12518–28. doi: 10.1128/JVI.05091-11. PubMed DOI PMC
Childs JE, Peters CJ. Ecology and epidemiology of arenaviruses and their hosts. In: Salvato MS, editor. The Arenaviridae. New York: Plenum Press; 1993. pp. 331–385.
Oldstone M. Arenaviruses: biology and immunotherapy. In: Clarke P, editor. Current topics in microbiology and immunology. New York: Springer Verlag; 2002. pp. 1–142.
Hotchin JE, Cinits M. Lymphocytic choriomeningitis infection of mice as a model for the study of latent virus infection1. Can J Microbiol. 1958;4:149–63. doi: 10.1139/m58-016. PubMed DOI
Oldstone M, Dixon F. Susceptibility of different mouse strains to lymphocytic choriomeningitis virus. J Immunol. 1968;100:355–7. PubMed
Mims CA. Observations on mice infected congenitally or neonatally with lymphocytic choriomeningitis. Arch. Virol. 1970;30(1):67–74. PubMed
Oldstone M, Sinha Y, Blount P, Tishon A, Rodriguez M, von Wedel R, et al. Virus-induced alterations in homeostasis: Alterations in differentiated functions of infected cells in vivo. Science. 1982;218:6. doi: 10.1126/science.7146898. PubMed DOI
Webb P, Justines G, Johnson K. Infection of wild and laboratory animals with Machupo and Latino viruses. Bull World Health Organ. 1975;52:493–9. PubMed PMC
Vitullo A, Hodara V, Merani MS. Effect of persistent infection with Junin virus on growth and reproduction of its natural reservoir, Calomys musculinus. Am J Trop Med Hyg. 1987;37:663–669. PubMed
Vitullo A, Merani MS. Vertical transmission of Junin virus in experimentally infected adult Calomys musculinus. Intervirology. 1990;31:339–44. doi: 10.1159/000150170. PubMed DOI
Borremans B, Vossen R, Becker-ziaja B, Gryseels S, Hughes N, Van Gestel M, et al. Shedding dynamics of Morogoro virus, an African arenavirus closely related to Lassa virus, in its natural reservoir host Mastomys natalensis. Sci Rep. 2015;5:10445. doi: 10.1038/srep10445. PubMed DOI PMC
Walker DH, Wulff H, Lange JV, Murphy FA. Comparative pathology of Lassa virus infection in monkeys, guinea-pigs, and Mastomys natalensis. Bull World Health Organ. 1975;52:523–34. PubMed PMC
Demartini J, Green D, Monath TP. Lassa virus infection in Mastomys natalensis in Sierra Leone: Gross and microscopic findings in infected and uninfected animals. Bull World Health Organ. 1975;52:651–63. PubMed PMC
Lalis A, Evin A, Janier M, Koivogui L, Denys C. Host evolution in Mastomys natalensis (Rodentia: Muridae): an integrative approach using geometric morphometrics and genetics. Integr Zool. 2015;10:505–14. doi: 10.1111/1749-4877.12164. PubMed DOI
Leirs H, Stuyck J, Verhagen R, Verheyen W. Seasonal variation in growth of Mastomys natalensis (Rodentia: Muridae) in Morogoro, Tanzania. Afr J Ecol. 1990;28:298–306. doi: 10.1111/j.1365-2028.1990.tb01164.x. DOI
Demby AH, Inapogui A, Kargbo K, Koninga J, Kourouma K, Kanu J, et al. Lassa fever in Guinea: II. Distribution and prevalence of Lassa virus infection in small mammals. 2001;1:283–99. PubMed
Borremans B, Leirs H, Gryseels S, Günther S, Makundi R, Goüy de Bellocq J. Presence of Mopeia virus, an African arenavirus, related to biotope and individual rodent host characteristics: implications for virus transmission. Vector Borne Zoonotic Dis. 2011;11:1125–31. doi: 10.1089/vbz.2010.0010. PubMed DOI
Kallio ER, Helle H, Koskela E, Mappes T, Vapalahti O. Age-related effects of chronic hantavirus infection on female host fecundity. J Anim Ecol. 2015;84:1264–72. doi: 10.1111/1365-2656.12387. PubMed DOI
Lord RD. The lens as an indicator of age in cottontail rabbits. J Wildl Manage. 1959;23:358–60. doi: 10.2307/3796900. DOI
Morris P. A review of mammalian age determination methods. Mamm Rev. 1972;2:69–104. doi: 10.1111/j.1365-2907.1972.tb00160.x. DOI
Leirs H. Population ecology of Mastomys natalensis (Smith, 1834). Implications for rodent control in Africa. Brussels: Belgian Administration for Development Cooperation; 1995.
Augusteyn RC. Growth of the eye lens : I. Weight accumulation in multiple species. Mol Vis. 2014;20:410–26. PubMed PMC
Jánová E, Nesvadbová J, Tkadlec E. Is the eye lens method of age estimation reliable in voles? Folia Zool. 2007;52:119–25.
Fichet-Calvet E, Lecompte E, Koivogui L, Soropogui B, Doré A, Kourouma F, et al. Fluctuation of abundance and Lassa virus prevalence in Mastomys natalensis in Guinea, West Africa. Vector Borne Zoonotic Dis. 2007;7:119–28. doi: 10.1089/vbz.2006.0520. PubMed DOI
Fichet-Calvet E, Lecompte E, Koivogui L, Daffis S, ter Meulen J. Reproductive characteristics of Mastomys natalensis and Lassa virus prevalence in Guinea, West Africa. Vector Borne Zoonotic Dis. 2008;8:41–8. doi: 10.1089/vbz.2007.0118. PubMed DOI
Fichet-Calvet E, Becker-Ziaja B, Koivogui L, Günther S. Lassa serology in natural populations of rodents and horizontal transmission. Vector Borne Zoonotic Dis. 2014;14:665–74. doi: 10.1089/vbz.2013.1484. PubMed DOI PMC
Fichet-Calvet E, Ölschläger S, Strecker T, Koivogui L, Becker-Ziaja B, Camara AB, et al. Spatial and temporal evolution of Lassa virus in the natural host population in Upper Guinea. Sci Rep. 2016;6:1–6. PubMed PMC
Vieth S, Drosten C, Lenz O, Vincent M, Omilabu S, Hass M, et al. RT-PCR assay for detection of Lassa virus and related Old World arenaviruses targeting the L gene. Trans R Soc Trop Med Hyg. 2007;101:1253–64. doi: 10.1016/j.trstmh.2005.03.018. PubMed DOI
Olschläger S, Lelke M, Emmerich P, Panning M, Drosten C, Hass M, et al. Improved detection of Lassa virus by reverse transcription-PCR targeting the 5′ region of S RNA. J Clin Microbiol. 2010;48:2009–13. doi: 10.1128/JCM.02351-09. PubMed DOI PMC
Wulff H, Lange J. Indirect immunofluorescence for the diagnosis of Lassa fever infection. Bull World Health Organ. 1975;52:429–36. PubMed PMC
Hufert FT, Liidke W, Sehmitz H. Epitope mapping of the Lassa virus nucleoprotein using monoclonal anti-nucleocapsid antibodies. Arch Virol. 1989;106:201–12. doi: 10.1007/BF01313953. PubMed DOI
R Core Team . R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2016.
Bernshtein A, Apekina N, Mikhailova T, Myasnikov Y, Khlyap L, Korotkov Y, et al. Dynamics of Puumala hantavirus infection in naturally infected bank voles (Clethrinomys glareolus) Arch Virol. 1999;144:2415–28. doi: 10.1007/s007050050654. PubMed DOI
Verhagen R, Leirs H, Tkachenko E, van der Groen G. Ecological and epidemiological data on hantavirus in bank vole populations in Belgium. Arch Virol. 1986;91:193–205. doi: 10.1007/BF01314280. PubMed DOI
Kallio ER, Poikonen A, Vaheri A, Vapalahti O, Henttonen H, Koskela E, et al. Maternal antibodies postpone hantavirus infection and enhance individual breeding success. Proc Biol Sci. 2006;273:2771–6. doi: 10.1098/rspb.2006.3645. PubMed DOI PMC
Kallio ER, Voutilainen L, Vapalahti O, Vaheri A, Henttonen H, Mappes T, et al. Endemic hantavirus infection impairs the winter survival of its rodent host. Ecology. 2007;88(8):1911–1916. doi: 10.1890/06-1620.1. PubMed DOI
Tersago K, Crespin L, Verhagen R, Leirs H. Impact of Puumala virus infection on maturation and survival in bank voles: a capture-mark-recapture analysis. J Wildl Dis. 2012;48:148–56. doi: 10.7589/0090-3558-48.1.148. PubMed DOI
Voutilainen L, Sironen T, Tonteri E, Tuiskunen Bäck A, Razzauti M, Karlsson M, et al. Life-long shedding of Puumala hantavirus in wild bank voles (Myodes glareolus) J Gen Virol. 2015;96:1238–1247. doi: 10.1099/vir.0.000076. PubMed DOI
Barber I, Dingemanse NJ. Parasitism and the evolutionary ecology of animal personality. Philos Trans R Soc Lond B Biol Sci. 2010;365:4077–88. doi: 10.1098/rstb.2010.0182. PubMed DOI PMC
Sluydts V, Crespin L, Davis S, Lima M, Leirs H. Survival and maturation rates of the African rodent, Mastomys natalensis: density-dependence and rainfall. Integr Zool. 2007;2:220–32. doi: 10.1111/j.1749-4877.2007.00065.x. PubMed DOI
Goyens J, Reijniers J, Borremans B, Leirs H. Density thresholds for Mopeia virus invasion and persistence in its host Mastomys natalensis. J Theor Biol. 2013;317:55–61. doi: 10.1016/j.jtbi.2012.09.039. PubMed DOI
Vitullo A, Merani M. Is vertical transmission sufficient to maintain Junin virus in nature? J Gen Virol. 1988;69:1437–40. doi: 10.1099/0022-1317-69-6-1437. PubMed DOI
Veenstra AJF. The behaviour of the multimammate mouse, Rattus (Mastomys) natalensis (A. Smith) Anim Behav. 1958;6:195–206. doi: 10.1016/0003-3472(58)90050-2. DOI
Kennis J, Sluydts V, Leirs H, van Hooft WFP. Polyandry and polygyny in an African rodent pest species, Mastomys natalensis. Mammalia. 2008;72:150–60. doi: 10.1515/MAMM.2008.025. DOI
Voutilainen L, Kallio ER, Niemimaa J, Vapalahti O, Henttonen H. Temporal dynamics of Puumala hantavirus infection in cyclic populations of bank voles. Sci Reports. 2016;6:1–14. doi: 10.1038/s41598-016-0001-8. PubMed DOI PMC
Sauvage F, Langlais M, Yoccoz NG, Pontier D. Modelling hantavirus in fluctuating populations of bank voles: the role of indirect transmission on virus persistence. J Anim Ecol. 2003;72:1–13. doi: 10.1046/j.1365-2656.2003.00675.x. DOI
Carlos J, Torre D, Oldstone M. Selective disruption of growth hormone transcription machinery by viral infection. Proc Natl Acad Sci U S A. 1992;89:9939–43. doi: 10.1073/pnas.89.20.9939. PubMed DOI PMC
Oldstone M, Southern P, Rodriquez M, Lampert P. Virus persists in beta cells of islets of Langerhans and is associated with chemical manifestations of diabetes. Science. 1984;224:1440–3. doi: 10.1126/science.6203172. PubMed DOI