BACKGROUND: In order to optimize net transmission success, parasites are hypothesized to evolve towards causing minimal damage to their reservoir host while obtaining high shedding rates. For many parasite species however this paradigm has not been tested, and conflicting results have been found regarding the effect of arenaviruses on their rodent host species. The rodent Mastomys natalensis is the natural reservoir host of several arenaviruses, including Lassa virus that is known to cause Lassa haemorrhagic fever in humans. Here, we examined the effect of three arenaviruses (Gairo, Morogoro and Lassa virus) on four parameters of wild-caught Mastomys natalensis: body mass, head-body length, sexual maturity and fertility. After correcting for the effect of age, we compared these parameters between arenavirus-positive (arenavirus RNA or antibody) and negative animals using data from different field studies in Guinea (Lassa virus) and Tanzania (Morogoro and Gairo viruses). RESULTS: Although the sample sizes of our studies (1297, 749 and 259 animals respectively) were large enough to statistically detect small differences in body conditions, we did not observe any adverse effects of these viruses on Mastomys natalensis. We did find that sexual maturity was significantly positively related with Lassa virus antibody presence until a certain age, and with Gairo virus antibody presence in general. Gairo virus antibody-positive animals were also significantly heavier and larger than antibody-free animals. CONCLUSION: Together, these results suggest that the pathogenicity of arenaviruses is not severe in M. natalensis, which is likely to be an adaptation of these viruses to optimize transmission success. They also suggest that sexual behaviour might increase the probability of M. natalensis to become infected with arenaviruses.
- MeSH
- Arenavirus izolace a purifikace MeSH
- infekce přenášené vektorem * MeSH
- infekce viry z čeledi Arenaviridae patologie veterinární virologie MeSH
- Murinae fyziologie virologie MeSH
- přenašečství patologie veterinární virologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Guinea MeSH
- Tanzanie MeSH
Many emerging infections are RNA virus spillovers from animal reservoirs. Reservoir identification is necessary for predicting the geographic extent of infection risk, but rarely are taxonomic levels below the animal species considered as reservoir, and only key circumstances in nature and methodology allow intrinsic virus-host associations to be distinguished from simple geographic (co-)isolation. We sampled and genetically characterized in detail a contact zone of two subtaxa of the rodent Mastomys natalensis in Tanzania. We find two distinct arenaviruses, Gairo and Morogoro virus, each spatially confined to a single M. natalensis subtaxon, only co-occurring at the contact zone's centre. Inter-subtaxon hybridization at this centre and a continuum of quality habitat for M. natalensis show that both viruses have the ecological opportunity to spread into the other substaxon's range, but do not, strongly suggesting host-intrinsic barriers. Such barriers could explain why human cases of another M. natalensis-borne arenavirus, Lassa virus, are limited to West Africa.
- MeSH
- Arenavirus klasifikace metabolismus fyziologie MeSH
- druhová specificita MeSH
- fylogeografie MeSH
- horečka Lassa virologie MeSH
- lidé MeSH
- Murinae virologie MeSH
- nemoci hlodavců virologie MeSH
- virus Lassa fyziologie MeSH
- zdroje nemoci virologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Tanzanie MeSH
Hantaviruses, well-known human pathogens, have only recently been identified on the African continent. Tigray virus (TIGV) was found in Ethiopia in 2012 in a Murinae species, Stenocephalemys albipes, but the genetic data obtained at that time were too limited to correctly assess its phylogenetic position within the hantavirus tree. We used high throughput sequencing to determine the complete genome of TIGV, which showed a typical hantavirus organisation. The large (L), medium (M), and small (S) genome segments were found to be 6532, 3594 and 1908 nucleotides long, respectively, and the 5' and 3' termini for all three segments were predicted to form the panhandle-like structure typical for bunyaviruses. Nucleotide-based phylogenetic analyses revealed that all three coding segments cluster in the phylogroup III sensu Guo et al. (2013). However, while TIGV S segment is basal to the Murinae-associated hantaviruses, the M and L segments are basal to the Soricomorpha-associated hantaviruses. TIGV is the first Murinae-borne hantavirus showing this inconsistent segmental clustering in the hantavirus phylogenetic tree. We finally propose non-exclusive scenarios that could explain the original phylogenetic position of TIGV.
- MeSH
- genom virový genetika MeSH
- genomika MeSH
- hantavirové infekce veterinární virologie MeSH
- Hantavirus genetika MeSH
- Murinae virologie MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Etiopie MeSH
Despite its near pan-African range, the Natal multimammate mouse, Mastomys natalensis, carries the human pathogen Lassa virus only in West Africa, while the seemingly non-pathogenic arenaviruses Mopeia, Morogoro, and Luna have been detected in this semi-commensal rodent in Mozambique/Zimbabwe, Tanzania and Zambia, respectively. Here, we describe a novel arenavirus in M. natalensis from Gairo district of central Tanzania, for which we propose the name "Gairo virus". Surprisingly, the virus is not closely related with Morogoro virus that infects M. natalensis only 90km south of Gairo, but clusters phylogenetically with Mobala-like viruses that infect non-M. natalensis host species in Central African Republic and Ethiopia. Despite the evolutionary distance, Gairo virus shares basic ecological features with the other M. natalensis-borne viruses Lassa and Morogoro. Our data show that M. natalensis, carrying distantly related viruses even in the same geographical area, is a potent reservoir host for a variety of arenaviruses.
- MeSH
- Arenavirus klasifikace genetika izolace a purifikace MeSH
- fylogeneze MeSH
- genetická variace * MeSH
- infekce viry z čeledi Arenaviridae imunologie veterinární virologie MeSH
- molekulární sekvence - údaje MeSH
- Murinae imunologie virologie MeSH
- nemoci hlodavců imunologie virologie MeSH
- protilátky virové imunologie MeSH
- virus Lassa klasifikace genetika izolace a purifikace MeSH
- zdroje nemoci virologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Tanzanie MeSH