Fast Ecotoxicity Detection Using Biosensors
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28450754
PubMed Central
PMC5382182
DOI
10.1007/s11270-017-3341-5
PII: 3341
Knihovny.cz E-zdroje
- Klíčová slova
- Biosensor, Green algae, Oxygen electrode, Silver nitrate, Toxicity, Water and soil pollution,
- Publikační typ
- časopisecké články MeSH
The article provides information about a new device, AlgaTox developed in the R&D project sponsored by the Technology Agency (n.TA02030179) and patented in Czech Republic (CZ 305687). Its functionality is based on the use of biosensor, and its main advantage is fast response rate. The toxicity detection is achieved through precise measurement of green algae oxygen production dynamics after their exposure to light of wavelength of 680 nm. Clark sensor with a resolution of 0.05% of the equilibrium oxygen concentrations and stability at a constant pressure and temperature of 0.1% of the equilibrium oxygen concentration at the 24-h measurement is used for the oxygen detection. Laboratory testing of the device has been made using silver nitrate, substance with known inhibitory effect on algae. Real samples of aqueous soil extracts and waste sample from old dried-up industrial tailing pond enriched with insecticide have been also tested. The values of oxygen production inhibition or stimulation determined with the new device in the evaluation of real samples were up to six times higher in comparison with the corresponding values of inhibition (stimulation) of growth rates determined by standard procedure.
BVT Technologies a s Strážek 206 592 53 Strážek Czech Republic
Transport Research Centre Líšeňská 33a 636 00 Brno Czech Republic
Zobrazit více v PubMed
Alpat KS, Alpat Ş, Kutlu B, Ozbayrak O, Büyükışık HB. Development of biosorption-based algal biosensor for Cu(II) using Tetraselmis chuii. Sensors and Actuators B-Chemical. 2007;128(1):273–278. doi: 10.1016/j.snb.2007.06.011. DOI
Alpat Ş, Alpat KS, Çadirci BH, Yaşa I, Telefoncu A. A novel microbial biosensor based on Circinella sp. modified carbon paste electrode and its voltammetric application. Sensors and Actuators B-Chemical. 2008;134(1):175–181. doi: 10.1016/j.snb.2008.04.044. DOI
Brayner R, Coute A, Livage J, Perrette C, Sicard C. Micro-algal biosensors. Analytical and Bioanalytical Chemistry. 2011;401(2):581–597. doi: 10.1007/s00216-011-5107-z. PubMed DOI
CS lab spol. s r. o. (2015). Report Proficiency testing laboratories PT/TX/1/2015 (PT43).
Durrieu C, Guedri H, Fremion F, Volatier L. Unicellular algae used as biosensors for chemical detection in Mediterranean lagoon and coastal waters. Research in Microbiology. 2011;162(9):908–914. doi: 10.1016/j.resmic.2011.07.002. PubMed DOI
Durrieu C, Lagarde F, Jaffrezic-Renault N. Nanotechnology assets in biosensors design for environmental monitoring. In: Brayner R, Fievet F, Coradin T, editors. Nanomaterials: a danger or a promise? London: Springer; 2013. pp. 189–229.
EN 12457-4 (2002). Characterisation of waste. Leaching. Compliance test for leaching of granular waste materials and sludges. One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 10 mm (without or with size reduction). Brusel: European Committee for Standardization.
EN ISO 8692 (2012). Water quality—freshwater algal growth inhibition test with unicellular green algae. Brusel: European Committee for Standardization.
Fakhrullin RF, Shlykova LV, Zamaleeva AI, Nurgaliev DK, Osin YN, Garcia-Alonso J, Paunov VN. Interfacing living unicellular algae cells with biocompatible polyelectrolyte-stabilised magnetic nanoparticles. Macromolecular Bioscience. 2010;10(10):1257–1264. doi: 10.1002/mabi.201000161. PubMed DOI
Ferro Y, Perullini M, Jobbagy M, Bilmes SA, Durrieu C. Development of a biosensor for environmental monitoring based on microalgae immobilized in silica hydrogels. Sensors. 2012;12(12):16879–16891. doi: 10.3390/s121216879. PubMed DOI PMC
Husu I, Rodio G, Touloupakis E, Lambreva MD, Buonasera K, Litescu SC, Giardi MT, Rea G. Insights into photo-electrochemical sensing of herbicides driven by Chlamydomonas reinhardtii cells. Sensors and Actuators B-Chemical. 2013;185:321–330. doi: 10.1016/j.snb.2013.05.013. DOI
Koblizek M, Maly J, Masojidek J, Komend J, Kucera T, et al. A biosensor for the detection of triazine and phenylurea herbicides designed using Photosystem II coupled to a screen-printed electrode. Biotechnology and Bioengineering. 2002;78(1):110–116. doi: 10.1002/bit.10190. PubMed DOI
Lagarde F, Jaffrezic-Renault N. Cell-based electrochemical biosensors for water quality assessment. Analytical and Bioanalytical Chemistry. 2011;400(4):947–964. doi: 10.1007/s00216-011-4816-7. PubMed DOI
Masojidek J, Soucek P, Machova J, Frolik J, Klem K, Maly J. Detection of photosynthetic herbicides: Algal growth inhibition test vs. electrochemical photosystem II biosensor. Ecotoxicology and Environmental Safety. 2011;74(1):117–122. doi: 10.1016/j.ecoenv.2010.08.028. PubMed DOI
Ministry of the Environment of the Czech Republic. (2007). Methodological guideline for the determination of toxicity of waste prepared by the Ministry of the Environment of Czech Republic. Bulletin of the Ministry of Environment of the Czech Republic, 17(4).
Nguyen-Ngoc H, Tran-Minh C. Fluorescent biosensor using whole cells in an inorganic translucent matrix. Analytica Chimica Acta. 2007;583(1):161–165. doi: 10.1016/j.aca.2006.10.005. PubMed DOI
Peña-Vazquez E, Maneiro E, Perez-Conde C, Moreno-Bondi MC, Costas E. Microalgae fiber optic biosensors for herbicide monitoring using sol–gel technology. Biosensors and Bioelectronics. 2009;24(12):3538–3543. doi: 10.1016/j.bios.2009.05.013. PubMed DOI
Peña-Vazquez E, Perez-Conde C, Costas E, Moreno-Bondiet MC. Development of a microalgal PAM test method for Cu (II) in waters: comparison of using spectrofluorometry. Ecotoxicology. 2010;19(6):1059–1065. doi: 10.1007/s10646-010-0487-y. PubMed DOI
Rashkov GD, Dobrikova AG, Pouneva ID, Misra AN, Apostolova EL. Sensitivity of Chlorella vulgaris to herbicides. Possibility of using it as a biological receptor in biosensors. Sensors and Actuators B-Chemical. 2012;161(1):151–155. doi: 10.1016/j.snb.2011.09.088. DOI
Sevcovicova J, Tkac J. Application of nanomaterials in microbial-cell biosensor constructions. Chemical Papers. 2015;69(1):42–53.
Shing WL, Heng LY, Surif S. Performance of a cyanobacteria whole cell-based fluorescence biosensor for heavy metal and pesticide detection. Sensors. 2013;13(5):6394–6404. doi: 10.3390/s130506394. PubMed DOI PMC
Shitanda I, Takada K, Sakai Y, Tatsuma T. Compact amperometric algal biosensors for the evaluation of water toxicity. Analytica Chimica Acta. 2005;530(2):191–197. doi: 10.1016/j.aca.2004.09.073. DOI
Shitanda I, Takamatsu S, Watanabe K, Itagaki M. Amperometric screen-printed algal biosensor with flow injection analysis system for detection of environmental toxic compounds. Electrochimica Acta. 2009;54(21):4933–4936. doi: 10.1016/j.electacta.2009.04.005. DOI
Singh J, Mittal SK. Chlorella sp. based biosensor for selective determination of mercury in presence of silver ions. Sensors and Actuators B-Chemical. 2012;165(1):48–52. doi: 10.1016/j.snb.2012.02.009. DOI
Singh J, Mittal SK. Whole cell based amperometric sensor with relative selectivity for zinc ions. Analytical Methods. 2012;4(5):1326–1331. doi: 10.1039/c2ay05903g. DOI
Zachleder V, Setlik I. Effect of irradiance on the course of RNA synthesis in the cell cycle of Scenedesmus quadricauda. Biologia Plantarum. 1982;24(5):341–353. doi: 10.1007/BF02909100. DOI
Zamaleeva AI, Sharipova IR, Shamagsumova RV, Ivanov AN, Evtugyn GA, et al. A whole-cell amperometric herbicide biosensor based on magnetically functionalised microalgae and screen-printed electrodes. Analytical Methods. 2011;3(3):509–513. doi: 10.1039/c0ay00627k. PubMed DOI
Zheng G, Wang Y, Qin J. Microalgal motility measurement microfluidic chip for toxicity assessment of heavy metals. Analytical and Bioanalytical Chemistry. 2012;404(10):3061–3069. doi: 10.1007/s00216-012-6408-6. PubMed DOI