Method for emissivity measurement of semitransparent coatings at ambient temperature
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
28469133
PubMed Central
PMC5431223
DOI
10.1038/s41598-017-01574-x
PII: 10.1038/s41598-017-01574-x
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Coatings deposited on a material surface are effective way of changing its surface properties. For increasing or decreasing radiation heat transfer, coatings with high or low emissivity are used. Measurement of spectral emissivity is a fundamental step to effective use of coatings for this application. Up to now the measurement methods are focused on bulk samples and mainly opaque ones. Here we present a method enabling measurement of emissivity of semitransparent coating itself, although it is deposited on a substrate. The method is based on measurement of transmittance and reflectance using an integration sphere system and Fourier transform infrared (FTIR) spectrometer for samples with two different coating thicknesses deposited on transparent substrates. Measured transmittance of the coating indicates spectral regions of potential emissivity differences using different substrates. From all the measured values, spectral emissivity can be characterized for different coating thicknesses. The spectral range of the method is from 2 μm to 20 μm. The measurement is done at ambient temperature enabling measurement of samples sensitive to heating like biomedical or nanocoatings. The method was validated on known bulk samples and an example of semitransparent coating measurement is shown on high-temperature high-emissivity coating.
See more in PubMed
Honnerová P, Honner M. Survey of emissivity measurement by radiometric methods. Appl. Optics. 2015;54:669–683. doi: 10.1364/AO.54.000669. PubMed DOI
Watanabe, H., Ishii, J., Wakabayashi, H., Kumano, T. & Hanssen, L. Chapter 9 - Spectral emissivity measurements. Experimental Methods in the Physical Sciences46, 333–366 (2014).
Howell, J. R., Mengüc, M. P. & Siegel, R. Thermal Radiation Heat Transfer. 5th Edition, CRC Press Taylor & Francis, 59–66 (2011).
Hanssen L, Kaplan S. Infrared diffuse reflectance instrumentation and standards at NIST. Anal. Chim. Acta. 1999;380:289–302. doi: 10.1016/S0003-2670(98)00669-2. DOI
Bergström D, Powell J, Kaplan AFH. The absorptance of steels to Nd:YLF and Nd:YAG laser light at room temperature. Appl. Sur. Sci. 2007;253:5017–5028. doi: 10.1016/j.apsusc.2006.11.018. PubMed DOI
Manara J, Arduini-Schuster M, Hanssen L. Integrating sphere reflectance and transmittance intercomparison measurements for evaluating the accuracies of the achieved results. High Temp. – High Press. 2009;38:259–276.
Čekon M, Kalousek M, Hraška J, Ingeli R. Spectral optical properties and thermodynamic performance of reflective coatings in a mild climate zone. Energy Build. 2014;77:343–354. doi: 10.1016/j.enbuild.2014.04.005. DOI
Hanssen L. Integrating-sphere system and method for absolute measurement of transmittance, reflectance, and absorptance of specular samples. Appl. Opt. 2001;40:3196–3204. doi: 10.1364/AO.40.003196. PubMed DOI
Goebel DG. Generalized integrating-sphere theory. Appl. Opt. 1967;6:125–128. doi: 10.1364/AO.6.000125. PubMed DOI
Seifter A, Boboridis K, Obst AW. Emissivity measurements on metallic surfaces with various degrees of roughness: a comparison of laser polarimetry and integrating sphere reflectometry. Int. J. Thermophys. 2004;25:547–560. doi: 10.1023/B:IJOT.0000028489.81327.b7. DOI
Keller MH, Arduini-Schuster M, Manara J. Determination of the infrared-optical properties of absorbing and scattering pigments at elevated temperatures. High Temp. – High Press. 2008;38:297–314.
Zhang, Y. & Dai, J. Spectral emissivity measurement facility for solar absorbing coating based on integrating-sphere reflectometry. 19th European Conference on Thermophysical Properties, Thessaloniki, Greece, (August 2011).
Brandenberg, W. M. Measurement of thermal radiation properties of solids - The reflectivity of solids at grazing angles, NASA SP-31, 75–82 (1963).
Hanssen LM, Cagran CP, Prokhorov AV, Mekhontsev SN, Khromchenko VB. Use of a high-temperature integrating sphere reflectometer for surface-temperature measurements. Int. J. Thermophys. 2007;28:566–580. doi: 10.1007/s10765-007-0180-4. DOI
Honnerová P, Martan J, Kučera M, Honner M, Hameury J. New experimental device for high-temperature normal spectral emissivity measurements of coatings. Means. Sci. Technol. 2014;25:095501. doi: 10.1088/0957-0233/25/9/095501. DOI
Benko I. High infrared emissivity coating for energy conservation and protection of inner surfaces in furnaces. Int. J. Glob. Energy. 2002;17:60–67. doi: 10.1504/IJGEI.2002.000931. DOI
Heynderickx GJ, Nozawa M. High-emissivity coatings on reactor tubes and furnace wall in steam cracking furnaces. Chem. Eng. Sci. 2004;59:5657–5662. doi: 10.1016/j.ces.2004.07.075. DOI
Stefanidis GD, et al. Evaluation of high-emissivity coatings in steam cracking furnaces using a non-grey gas radiation model. Chem. Eng. J. 2008;137:411–421. doi: 10.1016/j.cej.2007.04.042. DOI
Günthner M, Pscherer M, Kaufmann C, Motz G. High emissivity coatings based on polysilazanes for flexible Cu(In,Ga)Se2 thin-film solar cells. Sol. Energy Mater. Sol. Cells. 2014;123:97–103. doi: 10.1016/j.solmat.2014.01.027. DOI
Strauss JA, Soave PA, Ribeiro RS, Horowitz F. Absorber and self-cleaning surface on modified polymer plates for solar harvesting in the humid (sub)tropics. Sol. Energy. 2015;122:579–586. doi: 10.1016/j.solener.2015.09.020. DOI
Cremers, J. M. Textiles, Polymers and Composites for Buildings: 12 - Textiles for insulation systems, control of solar gains and thermal losses and solar systems. 1st Edition, Woodhead Publishing, 351–374 (2010).
Solovyev AA, Rabotkin SV, Kovsharov NF. Polymer films with multilayer low-E coatings. Mater. Sci. Semicond. Process. 2015;38:373–380. doi: 10.1016/j.mssp.2015.02.051. DOI
Zhang Z, et al. Enhanced radar and infrared compatible stealth properties in hierarchical SnO2@YnO nanostructures. Ceram. Int. 2017;43:3343–3447.
Athanasopoulos N, Siakavellas NJ. Programmable thermal emissivity structures based on bioinspiraed self-shape materials. Sci. Rep. 2015;5:17682. doi: 10.1038/srep17682. PubMed DOI PMC
Sittinger V, Lenck O, Vergöhl M, Szyszka B, Gräuer G. Applications of HIPIMS metal oxides. Thin Solid Films. 2013;548:18–26. doi: 10.1016/j.tsf.2013.08.087. DOI
PIKE Technologies. Integrating Spheres, Mid-IR IntegratIR http://www.piketech.com/IS-Mid-IR-IntegratIR-Integrating-Sphere.html (2016).
Höpe, A. Chapter 6 – Diffuse reflectance and transmittance. Experimental Methods in the Physical Sciences46, 179–219 (2014).
Clarke FJJ, Compton JA. Correction methods for integrating-sphere measurement of hemispherical reflectance. Color Research and Application. 1986;11:253–262. doi: 10.1002/col.5080110406. DOI
Fu T, Liu J. Measurement method for high-temperature infrared optical constants of ZnS crystal materials in a multi-layer structure. Infrared Phys. Technol. 2015;69:88–95. doi: 10.1016/j.infrared.2015.01.019. DOI
Miller, F. P., Vandome, A. F. & John, M. c. B. Fresnel Equations. VDM Publishing, 88 p. (2010).
Lira, I. Evaluating the Measurement Uncertainty: Fundamentals and Practical Guidance. CRC Press, 251 p. (2002).
Kaplan SG, Hanssen LM, Datla RU. Testing the radiometric accuracy of Fourier transform infrared transmittance measurements. Appl. Optics. 1997;36:8896–8908. doi: 10.1364/AO.36.008896. PubMed DOI
UQG Optics. Sapphire Windows and Plates, Random Orientation http://www.uqgoptics.com/catalogue/Windows/SAPPHIRE_WINDOWS_AND_PLATES_-_RANDOM_ORIENTATION_.aspx (2016).
Touloukian, Y. S. & DeWitt, D. P. Thermophysical Properties of Matter. Thermal Radiative Properties: Nonmetallic Solids 8, Plenum Press, 179–197 (1972).
Sova RM, Linevsky MJ, Thomas ME, Mark FF. High-temperature infrared properties of sapphire, AlON, fused silica, yttria, and spinel. Infrared Phys. Technol. 1998;39:251–261. doi: 10.1016/S1350-4495(98)00011-5. DOI
Maldague, X. P. V. & Moore, P. O. Nondestruktive testing handbook: Infrared and thermal testing. American society for nondestructive testing, 718 p. (2001).
Kempfert, K. D., Jiang, E. Y., Oas, S. & Coffin, J. Detectors for Fourier Transform Spectroscopy. Thermo Nicolet Corporation, AN-00125 (2001).
Rousseau B, Brun JF, De Sousa Meneses D, Echegut P. Temperature measurement: Christiancesn wavelength and blackbody reference. Int. J. Thermophys. 2005;26:1277–1286. doi: 10.1007/s10765-005-6726-4. DOI