Spectral Emissivity and Thermal Conductivity Properties of Black Aluminum Films

. 2025 Feb 18 ; 41 (6) : 3832-3842. [epub] 20250101

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39743727

Black aluminum is a material characterized by high surface porosity due to columnar growth and exhibits unique optical properties that make it attractive for applications such as light trapping, infrared detection, and passive thermal radiation cooling. In this study, we correlate the structural and optical properties of black aluminum by comparing it with conventional reflective aluminum layers. These layers of varying thicknesses were deposited on fused silica substrates, and their optical properties were analyzed. COMSOL simulations, supported by experimental data, reveal that black aluminum's structure leads to a significant reduction in visible light reflectivity and an increase in emissivity in the near- and mid-infrared ranges. This enhanced emissivity is partly due to the presence of aluminum nitride (AlN) grain boundaries and an oxidized surface layer. Optically, black aluminum differs significantly from reflective aluminum by presenting a reflectivity below 5% in visible wavelength and an average emissivity of approximately 0.4-0.5 from 1.2 to 20 μm. Thermally, it possesses approximately ten times lower thermal conductivity and doubles the volumetric heat capacity. These differences are attributed to its porous structure, nanoscale crystallites, and the presence of aluminum nitrides and oxides within the material.

Zobrazit více v PubMed

Bell L. E. Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science 2008, 321 (5895), 1457–1461. 10.1126/science.1158899. PubMed DOI

DiSalvo F. J. Thermoelectric Cooling and Power Generation. Science 1999, 285 (5428), 703–706. 10.1126/science.285.5428.703. PubMed DOI

Shi X.-L.; Zou J.; Chen Z.-G. Advanced Thermoelectric Design: From Materials and Structures to Devices. Chem. Rev. 2020, 120 (15), 7399–7515. 10.1021/acs.chemrev.0c00026. PubMed DOI

Petsagkourakis I.; Tybrandt K.; Crispin X.; Ohkubo I.; Satoh N.; Mori T. Thermoelectric Materials and Applications for Energy Harvesting Power Generation. Sci. Technol. Adv. Mater. 2018, 19 (1), 836–862. 10.1080/14686996.2018.1530938. PubMed DOI PMC

Sebald G.; Lefeuvre E.; Guyomar D. Pyroelectric Energy Conversion: Optimization Principles. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 2008, 55 (3), 538–551. 10.1109/TUFFC.2008.680. PubMed DOI

Sebald G.; Guyomar D.; Agbossou A. On Thermoelectric and Pyroelectric Energy Harvesting. Smart Materials and Structures 2009, 18 (12), 125006.10.1088/0964-1726/18/12/125006. DOI

Blevin W. R.; Geist J. Influence of Black Coatings on Pyroelectric Detectors. Appl. Opt. 1974, 13 (5), 1171.10.1364/AO.13.001171. PubMed DOI

Lehman J.; Theocharous E.; Eppeldauer G.; Pannell C. Gold-Black Coatings for Freestanding Pyroelectric Detectors. Measurement Science and Technology 2003, 14 (7), 916–922. 10.1088/0957-0233/14/7/304. DOI

More-Chevalier J.; Yudin P. V.; Cibert C.; Bednyakov P.; Fitl P.; Valenta J.; Novotný M.; Savinov M.; Poupon M.; Zikmund T.; Poullain G.; Lančok J. Black Aluminum-Coated Pt/Pb(Zr 0.56 Ti 0.44)O 3 /Pt Thin Film Structures for Pyroelectric Energy Harvesting from a Light Source. J. Appl. Phys. 2019, 126 (21), 214501.10.1063/1.5130538. DOI

Zabek D.; Seunarine K.; Spacie C.; Bowen C. Graphene Ink Laminate Structures on Poly(Vinylidene Difluoride) (PVDF) for Pyroelectric Thermal Energy Harvesting and Waste Heat Recovery. ACS Appl. Mater. Interfaces 2017, 9 (10), 9161–9167. 10.1021/acsami.6b16477. PubMed DOI

Komatsu R.; Balčytis A.; Seniutinas G.; Yamamura T.; Nishijima Y.; Juodkazis S. Plasmonic Photo-Thermoelectric Energy Converter with Black-Si Absorber. Sol. Energy Mater. Sol. Cells 2015, 143, 72–77. 10.1016/j.solmat.2015.06.035. DOI

Cheng P.; Wang H.; Müller B.; Müller J.; Wang D.; Schaaf P. Photo-Thermoelectric Conversion Using Black Silicon with Enhanced Light Trapping Performance Far beyond the Band Edge Absorption. ACS Appl. Mater. Interfaces 2021, 13 (1), 1818–1826. 10.1021/acsami.0c17279. PubMed DOI

Cheng P.; Döll J.; Wang H.; van Aken P. A.; Wang D.; Schaaf P. Reactive Magnetron Sputtering of Large-Scale 3D Aluminum-Based Plasmonic Nanostructure for Both Light-Induced Thermal Imaging and Photo-Thermoelectric Conversion. Advanced Opt. Mater. 2023, 11, 2202664.10.1002/adom.202202664. DOI

Zhang X.-Y.; Shan F.; Zhou H.-L.; Su D.; Xue X.-M.; Wu J.-Y.; Chen Y.-Z.; Zhao N.; Zhang T. Silver Nanoplate Aggregation Based Multifunctional Black Metal Absorbers for Localization, Photothermic Harnessing Enhancement and Omnidirectional Light Antireflection. J. Mater. Chem. C 2018, 6 (5), 989–999. 10.1039/C7TC04486K. DOI

Vorobyev A. Y.; Guo C. Metallic Light Absorbers Produced by Femtosecond Laser Pulses. Advances in Mechanical Engineering 2010, 2, 452749.10.1155/2010/452749. DOI

Moreau A.; Ciracì C.; Mock J. J.; Hill R. T.; Wang Q.; Wiley B. J.; Chilkoti A.; Smith D. R. Controlled-Reflectance Surfaces with Film-Coupled Colloidal Nanoantennas. Nature 2012, 492 (7427), 86–89. 10.1038/nature11615. PubMed DOI PMC

Bae K.; Kang G.; Cho S. K.; Park W.; Kim K.; Padilla W. J. Flexible Thin-Film Black Gold Membranes with Ultrabroadband Plasmonic Nanofocusing for Efficient Solar Vapour Generation. Nat. Commun. 2015, 6 (1), 10103.10.1038/ncomms10103. PubMed DOI PMC

More-Chevalier J.; Novotný M.; Hruška P.; Fekete L.; Fitl P.; Bulíř J.; Pokorný P.; Volfová L.; Havlová Š.; Vondráček M.; Lančok J. Fabrication of Black Aluminium Thin Films by Magnetron Sputtering. RSC Adv. 2020, 10 (35), 20765–20771. 10.1039/D0RA00866D. PubMed DOI PMC

Hruška P.; More-Chevalier J.; Novotný M.; Čížek J.; Melikhova O.; Fekete L.; Poupon M.; Bulíř J.; Volfová L.; Butterling M.; Liedke M. O.; Wagner A.; Fitl P. Effect of Roughness and Nanoporosity on Optical Properties of Black and Reflective Al Films Prepared by Magnetron Sputtering. J. Alloys Compd. 2021, 872, 159744.10.1016/j.jallcom.2021.159744. DOI

Zheng B.; Wang W.; Jiang G.; Mei X. Fabrication of Broadband Antireflective Black Metal Surfaces with Ultra-Light-Trapping Structures by Picosecond Laser Texturing and Chemical Fluorination. Appl. Phys. B: Laser Opt. 2016, 122 (6), 180.10.1007/s00340-016-6449-1. DOI

Vorobyev A. Y.; Guo C. Colorizing Metals with Femtosecond Laser Pulses. Appl. Phys. Lett. 2008, 92 (4), 041914.10.1063/1.2834902. DOI

Ou Z.; Huang M.; Zhao F. Colorizing Pure Copper Surface by Ultrafast Laser-Induced near-Subwavelength Ripples. Opt. Express 2014, 22 (14), 17254.10.1364/OE.22.017254. PubMed DOI

Huang H.; Yang L.-M.; Bai S.; Liu J. Blackening of Metals Using Femtosecond Fiber Laser. Appl. Opt. 2015, 54 (2), 324.10.1364/AO.54.000324. PubMed DOI

Vorobyev A. Y.; Guo C. Multifunctional Surfaces Produced by Femtosecond Laser Pulses. J. Appl. Phys. 2015, 117 (3), 03310310.1063/1.4905616. DOI

Melikhova O.; Čížek J.; Hruška P.; Lukáč F.; Novotný M.; More-Chevalier J.; Fitl P.; Liedke M. O.; Butterling M.; Wagner A. Microstructure and Nanoscopic Porosity in Black Pd Films. Acta Phys. Polym., A 2020, 137 (2), 222–226. 10.12693/APhysPolA.137.222. DOI

Melikhova O.; Čížek J.; Hruška P.; Liedke M. O.; Butterling M.; Wagner A.; Novotný M.; More-Chevalier J. Study of Nanoscopic Porosity in Black Metals by Positron Annihilation Spectroscopy. Acta Phys. Polym., B 2020, 51 (1), 383.10.5506/APhysPolB.51.383. DOI

Novotný M.; Fitl P.; Sytchkova A.; Bulíř J.; Lančok J.; Pokorný P.; Najdek D.; Bočan J. Pulsed Laser Treatment of Gold and Black Gold Thin Films Fabricated by Thermal Evaporation. Open Physics 2009, 7 (2), 327.10.2478/s11534-009-0027-7. DOI

Alvarez R.; García-Martín J. M.; Macías-Montero M.; Gonzalez-Garcia L.; González J. C.; Rico V.; Perlich J.; Cotrino J.; González-Elipe A. R.; Palmero A. Growth Regimes of Porous Gold Thin Films Deposited by Magnetron Sputtering at Oblique Incidence: From Compact to Columnar Microstructures. Nanotechnology 2013, 24 (4), 04560410.1088/0957-4484/24/4/045604. PubMed DOI

Pokorný P.; Novotný M.; More-Chevalier J.; Dekhtyar Y.; Romanova M.; Davídková M.; Chertopalov S.; Fitl P.; Hruška M.; Kawamura M.; Kiba T.; Lančok J. Surface Processes on Thin Layers of Black Aluminum in Ultra-High Vacuum. Vacuum 2022, 205, 111377.10.1016/j.vacuum.2022.111377. DOI

Romanova M.; More-Chevalier J.; Novotny M.; Pokorny P.; Volfova L.; Fitl P.; Poplausks R.; Dekhtyar Y. Thermal Stability of Black Aluminum Films and Growth of Aluminum Nanowires from Mechanical Defects on the Film Surface during Annealing. Physica Status Solidi (b) 2022, 259, 2100467.10.1002/pssb.202100467. DOI

Corrêa C. A.; More-Chevalier J.; Hruška P.; Poupon M.; Novotný M.; Minárik P.; Hubík P.; Lukáč F.; Fekete L.; Prokop D.; Hanuš J.; Valenta J.; Fitl P.; Lančok J. Microstructure and Physical Properties of Black-Aluminum Antireflective Films. RSC Adv. 2024, 14 (22), 15220–15231. 10.1039/D4RA00396A. PubMed DOI PMC

Pfund A. H. BISMUTH BLACK AND ITS APPLICATIONS. Rev. Sci. Instrum. 1930, 1 (7), 397–399. 10.1063/1.1748708. DOI

Lysenko V. S.; Mal’nev A. F. Optical Characteristics of Metal Blacks. J. Appl. Spectrosc. 1969, 10 (5), 566–570. 10.1007/BF00607815. DOI

Palatnik L. S.; Kovaleva O. I.; Tartakovskaya I. Kh.; Derevyanchenko A. S. Investigation of Low Vacuum Condensates of Aluminum Using Electron Microscopy and Spectroscopy. J. Appl. Spectrosc. 1977, 27 (6), 1524–1526. 10.1007/BF00605537. DOI

Hruška M.; More-Chevalier J.; Fitl P.; Novotný M.; Hruška P.; Prokop D.; Pokorný P.; Kejzlar J.; Gadenne V.; Patrone L.; Vrňata M.; Lančok J. Surface Enhancement Using Black Coatings for Sensor Applications. Nanomaterials 2022, 12 (23), 4297.10.3390/nano12234297. PubMed DOI PMC

Gu S.; Lu Y.; Ding Y.; Li L.; Song H.; Wang J.; Wu Q. A Droplet-Based Microfluidic Electrochemical Sensor Using Platinum-Black Microelectrode and Its Application in High Sensitive Glucose Sensing. Biosens. Bioelectron. 2014, 55, 106–112. 10.1016/j.bios.2013.12.002. PubMed DOI

Fernandez R. E.; Koklu A.; Mansoorifar A.; Beskok A. Platinum Black Electrodeposited Thread Based Electrodes for Dielectrophoretic Assembly of Microparticles. Biomicrofluidics 2016, 10 (3), 03310110.1063/1.4946015. PubMed DOI PMC

Christiansen A. B.; Caringal G. P.; Clausen J. S.; Grajower M.; Taha H.; Levy U.; Asger Mortensen N.; Kristensen A. Black Metal Thin Films by Deposition on Dielectric Antireflective Moth-Eye Nanostructures. Sci. Rep. 2015, 5 (1), 10563.10.1038/srep10563. PubMed DOI PMC

Toor F.; Miller J. B.; Davidson L. M.; Duan W.; Jura M. P.; Yim J.; Forziati J.; Black M. R. Metal Assisted Catalyzed Etched (MACE) Black Si: Optics and Device Physics. Nanoscale 2016, 8 (34), 15448–15466. 10.1039/C6NR04506E. PubMed DOI

Hruška M.; Kejzlar J.; Otta J.; Fitl P.; Novotný M.; Čížek J.; Melikhova O.; Mičušík M.; Machata P.; Vrňata M. Hydrogen Sensing Capabilities of Highly Nanoporous Black Gold Films. Appl. Surf. Sci. 2024, 647, 158618.10.1016/j.apsusc.2023.158618. DOI

Anderson R. E.; Crawford J. R. Aluminum Black Films. Appl. Opt. 1981, 20 (12), 2041.10.1364/AO.20.002041. PubMed DOI

O’Neill P.; Doland A.; Ignat C. The Dependence of Optical Properties on the Structural Composition of Solar Absorbers: Gold Black. Sol. Energy 1978, 21 (6), 465–468. 10.1016/0038-092X(78)90069-5. DOI

Pokorný P.; Novotný M.; Hruška M.; More-Chevalier J.; Fitl P.; Dekhtyar Y.; Romanova M.; Kiba T.; Kawamura M.; Vrňata M.; Vacík J.; Lančok J. Thermally Stimulated Desorption from the Surface of Black Aluminum Layers Prepared by PVD Methods. Vacuum 2024, 227, 113425.10.1016/j.vacuum.2024.113425. DOI

Pokorný P.; Hruška M.; Novotný M.; More-Chevalier J.; Fitl P.; Chertopalov S.; Kiba T.; Kawamura M.; Vrňata M.; Lančok J. Thermally Stimulated Exoelectron Emission from the Surface of Black Aluminum Layers Prepared by PVD Methods. Vacuum 2024, 221, 112880.10.1016/j.vacuum.2023.112880. DOI

Petříček V.; Palatinus L.; Plášil J.; Dušek M. Jana2020–a New Version of the Crystallographic Computing System Jana. Zeitschrift für Kristallographie - Crystalline Materials 2023, 238, 271.10.1515/zkri-2023-0005. DOI

Nečas D.; Klapetek P. Gwyddion: An Open-Source Software for SPM Data Analysis. Open Physics 2012, 10 (1), 181–188. 10.2478/s11534-011-0096-2. DOI

Honnerová P.; Martan J.; Veselý Z.; Honner M. Method for Emissivity Measurement of Semitransparent Coatings at Ambient Temperature. Sci. Rep 2017, 7 (1), 1386.10.1038/s41598-017-01574-x. PubMed DOI PMC

Howell J. R.; Siegel R.; Mengüç M. P.. Thermal Radiation Heat Transfer, 5th ed.; CRC Press: Boca Raton, FL, 2011.

Martan J.; Hervé O.; Lang V. Two-Detector Measurement System of Pulse Photothermal Radiometry for the Investigation of the Thermal Properties of Thin Films. J. Appl. Phys. 2007, 102, 064903.10.1063/1.2778642. DOI

Martan J. Optical Layer Development for Thin Films Thermal Conductivity Measurement by Pulsed Photothermal Radiometry. Rev. Sci. Instrum. 2015, 86 (1), 01490210.1063/1.4904876. PubMed DOI

Proffen T.; Page K. L.; McLain S. E.; Clausen B.; Darling T. W.; TenCate J. A.; Lee S.-Y.; Ustundag E. Atomic Pair Distribution Function Analysis of Materials Containing Crystalline and Amorphous Phases. Zeitschrift für Kristallographie - Crystalline Materials 2005, 220 (12), 1002.10.1524/zkri.2005.220.12.1002. DOI

Biswas R. K.; Khan P.; Mukherjee S.; Mukhopadhyay A. K.; Ghosh J.; Muraleedharan K. Study of Short Range Structure of Amorphous Silica from PDF Using Ag Radiation in Laboratory XRD System, RAMAN and NEXAFS. J. Non-Cryst. Solids 2018, 488, 1–9. 10.1016/j.jnoncrysol.2018.02.037. DOI

Miller P. H.; DuMond J. W. M. Tests for the Validity of the X-Ray Crystal Method for Determining N and e with Aluminum, Silver and Quartz. Phys. Rev. 1940, 57 (3), 198–206. 10.1103/PhysRev.57.198. DOI

Biswas M.; Sahoo A.; Muraleedharan K.; Bandyopadhyay S. Crystal Structure of 27R-SiAlON Synthesized Under Carbothermal Nitridation. Transactions of the Indian Ceramic Society 2021, 80 (1), 1–5. 10.1080/0371750X.2020.1852972. DOI

Paturaud C.; Farges G.; Sainte Catherine M. C.; Machet J. Influence of Particle Energies on the Properties of Magnetron Sputtered Tungsten Films. Surf. Coat. Technol. 1998, 98 (1–3), 1257–1261. 10.1016/S0257-8972(97)00404-0. DOI

Schoderböck P.; Köstenbauer H. Residual Stress Determination in Thin Films by X-Ray Diffraction and the Widespread Analytical Practice Applying a Biaxial Stress Model: An Outdated Oversimplification?. Appl. Surf. Sci. 2021, 541, 148531.10.1016/j.apsusc.2020.148531. DOI

Pletea M.; Koch R.; Wendrock H.; Kaltofen R.; Schmidt O. G. In Situ Stress Evolution during and after Sputter Deposition of Al Thin Films. J. Phys.: Condens. Matter 2009, 21 (22), 225008.10.1088/0953-8984/21/22/225008. PubMed DOI

Abadias G.; Chason E.; Keckes J.; Sebastiani M.; Thompson G. B.; Barthel E.; Doll G. L.; Murray C. E.; Stoessel C. H.; Martinu L. Review Article: Stress in Thin Films and Coatings: Current Status, Challenges, and Prospects. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2018, 36 (2), 02080110.1116/1.5011790. DOI

Windischmann H. Intrinsic Stress in Sputtered Thin Films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 1991, 9 (4), 2431–2436. 10.1116/1.577295. DOI

Gianola D. S.; Mendis B. G.; Cheng X. M.; Hemker K. J. Grain-Size Stabilization by Impurities and Effect on Stress-Coupled Grain Growth in Nanocrystalline Al Thin Films. Materials Science and Engineering: A 2008, 483–484, 637–640. 10.1016/j.msea.2006.12.155. DOI

Tang F.; Gianola D. S.; Moody M. P.; Hemker K. J.; Cairney J. M. Observations of Grain Boundary Impurities in Nanocrystalline Al and Their Influence on Microstructural Stability and Mechanical Behaviour. Acta Mater. 2012, 60 (3), 1038–1047. 10.1016/j.actamat.2011.10.061. DOI

Cougnon F. G.; Dulmaa A.; Dedoncker R.; Galbadrakh R.; Depla D. Impurity Dominated Thin Film Growth. Appl. Phys. Lett. 2018, 112 (22), 221903.10.1063/1.5021528. DOI

Dulmaa A.; Cougnon F. G.; Dedoncker R.; Depla D. On the Grain Size-Thickness Correlation for Thin Films. Acta Mater. 2021, 212, 116896.10.1016/j.actamat.2021.116896. DOI

Petrov I.; Barna P. B.; Hultman L.; Greene J. E. Microstructural Evolution during Film Growth. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2003, 21 (5), S117–S128. 10.1116/1.1601610. DOI

Repän T.; More-Chevalier J.; Martan J.; Hruška P.; Novotný M.; Honnerová P.; Kejzlar J.; Poupon M.; Prokop D.; Fitl P.; Lančok J.; Jaaniso R.. Numerical Investigation of Absorption Mechanisms in Black Aluminum Films. CLEO 2024; Optica Publishing Group: Charlotte, NC, 2024; JTu2A.172,10.1364/CLEO_AT.2024.JTu2A.172. DOI

Ehrenreich H.; Philipp H. R.; Segall B. Optical Properties of Aluminum. Phys. Rev. 1963, 132 (5), 1918–1928. 10.1103/PhysRev.132.1918. DOI

Diest K.; Liberman V.; Lennon D. M.; Welander P. B.; Rothschild M. Aluminum Plasmonics: Optimization of Plasmonic Properties Using Liquid-Prism-Coupled Ellipsometry. Opt. Express 2013, 21 (23), 28638.10.1364/OE.21.028638. PubMed DOI

Novotny M. In-Situ Monitoring of the Growth of Nanostructured Aluminum Thin Film. J. Nanophoton 2011, 5 (1), 05150310.1117/1.3543816. DOI

Schmitt P.; Stempfhuber S.; Felde N.; Szeghalmi A. V.; Kaiser N.; Tünnermann A.; Schwinde S. Influence of Seed Layers on the Reflectance of Sputtered Aluminum Thin Films. Opt. Express 2021, 29 (13), 19472.10.1364/OE.428343. PubMed DOI

Lugolole R.; Obwoya S. K. The Effect of Thickness of Aluminium Films on Optical Reflectance. Journal of Ceramics 2015, 2015, 1–6. 10.1155/2015/213635. DOI

Du H.; Xiao J. Q.; Zou Y. S.; Wang T. G.; Gong J.; Sun C.; Wen L. S. Optical Properties of Ultrathin Aluminum Films Deposited by Magnetron Sputtering in Visible Band. Opt. Mater. 2006, 28 (8–9), 944–949. 10.1016/j.optmat.2005.04.011. DOI

Lindseth I.; Bardal A.; Spooren R. Reflectance Measurements of Aluminium Surfaces Using Integrating Spheres. Optics and Lasers in Engineering 1999, 32, 419.10.1016/S0143-8166(00)00010-5. DOI

Rincón-Llorente G.; Heras I.; Guillén Rodríguez E.; Schumann E.; Krause M.; Escobar-Galindo R. On the Effect of Thin Film Growth Mechanisms on the Specular Reflectance of Aluminium Thin Films Deposited via Filtered Cathodic Vacuum Arc. Coatings 2018, 8 (9), 321.10.3390/coatings8090321. DOI

Chen Y.; Xin X.; Zhang N.; Xu Y.-J. Aluminum-Based Plasmonic Photocatalysis. Particle and Particle System Characterization 2017, 34, 1600357.10.1002/ppsc.201600357. DOI

Park J.; Son K.; Lee J.; Kim D.; Chung W. Effects of Anodizing Conditions on Thermal Properties of Al 20XX Alloys for Aircraft. Symmetry 2021, 13 (3), 433.10.3390/sym13030433. DOI

Zhang K.; Yu K.; Liu Y.; Zhao Y. Effect of Surface Oxidation on Emissivity Properties of Pure Aluminum in the near Infrared Region. Mater. Res. Express 2017, 4 (8), 08650110.1088/2053-1591/aa7fc9. DOI

Wen C.-D.; Mudawar I. Experimental Investigation of Emissivity of Aluminum Alloys and Temperature Determination Using Multispectral Radiation Thermometry (MRT) Algorithms. Journal of Materials Engineering and Performance 2002, 11 (5), 551–562. 10.1361/105994902770343818. DOI

Muley S. V.; Ravindra N. M. Emissivity of Electronic Materials, Coatings, and Structures. JOM 2014, 66 (4), 616–636. 10.1007/s11837-014-0940-0. DOI

Zhang T.; Dong W.; Wang Z. Y.; Yi X. S.; Zhao Y.; Yuan Z. D.; Zhao Y. L. Investigation of Infrared Spectral Emissivity of Low Emittance Functional Coating Artefacts. Infrared Physics & Technology 2020, 110, 103454.10.1016/j.infrared.2020.103454. DOI

Zhang S. Y.; Shen F. Z.; Liu H. M.; Huang C. J.; Li L. F. The Experimental Measurement of the Thermal Emissivity of a Black Coating from 50 to 300 K. IOP Conf. Ser.: Mater. Sci. Eng. 2022, 1241 (1), 01205310.1088/1757-899X/1241/1/012053. DOI

Seronde F.; Echegut P.; Coutures J. P.; Gervais F. Emissivity of Oxides: A Microscopic Approach to Glass Coatings. Materials Science and Engineering: B 1991, 8 (4), 315–327. 10.1016/0921-5107(91)90053-X. DOI

González De Arrieta I.; Echániz T.; Fuente R.; Rubin E.; Chen R.; Igartua J. M.; Tello M. J.; López G. A. Infrared Emissivity of Copper-Alloyed Spinel Black Coatings for Concentrated Solar Power Systems. Sol. Energy Mater. Sol. Cells 2019, 200, 109961.10.1016/j.solmat.2019.109961. DOI

Kumagai T.; To N.; Balčytis A.; Seniutinas G.; Juodkazis S.; Nishijima Y. Kirchhoff’s Thermal Radiation from Lithography-Free Black Metals. Micromachines 2020, 11 (9), 824.10.3390/mi11090824. PubMed DOI PMC

Guo J.; Guo X.; Xu W.; Zhang Z.; Dong J.; Peng L.; Ding W. A Zn-Ni Coating with Both High Electrical Conductivity and Infrared Emissivity Prepared by Hydrogen Evolution Method. Appl. Surf. Sci. 2017, 402, 92–98. 10.1016/j.apsusc.2017.01.053. DOI

Zhang A.; Li Y. Thermal Conductivity of Aluminum Alloys—A Review. Materials 2023, 16 (8), 2972.10.3390/ma16082972. PubMed DOI PMC

Friesen C.; Seel S. C.; Thompson C. V. Reversible Stress Changes at All Stages of Volmer–Weber Film Growth. J. Appl. Phys. 2004, 95 (3), 1011–1020. 10.1063/1.1637728. DOI

Yagi T.; Oka N.; Okabe T.; Taketoshi N.; Baba T.; Shigesato Y. Effect of Oxygen Impurities on Thermal Diffusivity of AlN Thin Films Deposited by Reactive RF Magnetron Sputtering. Jpn. J. Appl. Phys. 2011, 50 (11S), 11RB01.10.1143/JJAP.50.11RB01. DOI

Jaramillo-Fernandez J.; Ordonez-Miranda J.; Ollier E.; Volz S. Tunable Thermal Conductivity of Thin Films of Polycrystalline AlN by Structural Inhomogeneity and Interfacial Oxidation. Phys. Chem. Chem. Phys. 2015, 17 (12), 8125–8137. 10.1039/C4CP05838K. PubMed DOI

Wolf A.; Brendel R. Thermal Conductivity of Sintered Porous Silicon Films. Thin Solid Films 2006, 513 (1–2), 385–390. 10.1016/j.tsf.2006.01.073. DOI

Ansari M. A. Modelling of Size-Dependent Thermodynamic Properties of Metallic Nanocrystals Based on Modified Gibbs–Thomson Equation. Appl. Phys. A: Mater. Sci. Process. 2021, 127 (5), 385.10.1007/s00339-021-04535-4. DOI

Yoshida M.; Utsumi N.; Ichiki R.; Kong J. H.; Okumiya M. Surface Structure and Emissivity of Aluminum Nitride Films. AMR 2015, 1110, 163–168. 10.4028/www.scientific.net/AMR.1110.163. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...