Spectral Emissivity and Thermal Conductivity Properties of Black Aluminum Films
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39743727
PubMed Central
PMC11841031
DOI
10.1021/acs.langmuir.4c03838
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Black aluminum is a material characterized by high surface porosity due to columnar growth and exhibits unique optical properties that make it attractive for applications such as light trapping, infrared detection, and passive thermal radiation cooling. In this study, we correlate the structural and optical properties of black aluminum by comparing it with conventional reflective aluminum layers. These layers of varying thicknesses were deposited on fused silica substrates, and their optical properties were analyzed. COMSOL simulations, supported by experimental data, reveal that black aluminum's structure leads to a significant reduction in visible light reflectivity and an increase in emissivity in the near- and mid-infrared ranges. This enhanced emissivity is partly due to the presence of aluminum nitride (AlN) grain boundaries and an oxidized surface layer. Optically, black aluminum differs significantly from reflective aluminum by presenting a reflectivity below 5% in visible wavelength and an average emissivity of approximately 0.4-0.5 from 1.2 to 20 μm. Thermally, it possesses approximately ten times lower thermal conductivity and doubles the volumetric heat capacity. These differences are attributed to its porous structure, nanoscale crystallites, and the presence of aluminum nitrides and oxides within the material.
Charles University Faculty of Mathematics and Physics 5 Holešovičkách 2 180 00 Prague Czech Republic
Institute of Physics Czech Academy of Sciences Na Slovance 2 182 21 Prague 8 Czech Republic
Institute of Physics University of Tartu W Ostwald St 1 Tartu 50411 Estonia
New Technologies Research Centre University of West Bohemia 301 00 Pilsen Czech Republic
Zobrazit více v PubMed
Bell L. E. Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science 2008, 321 (5895), 1457–1461. 10.1126/science.1158899. PubMed DOI
DiSalvo F. J. Thermoelectric Cooling and Power Generation. Science 1999, 285 (5428), 703–706. 10.1126/science.285.5428.703. PubMed DOI
Shi X.-L.; Zou J.; Chen Z.-G. Advanced Thermoelectric Design: From Materials and Structures to Devices. Chem. Rev. 2020, 120 (15), 7399–7515. 10.1021/acs.chemrev.0c00026. PubMed DOI
Petsagkourakis I.; Tybrandt K.; Crispin X.; Ohkubo I.; Satoh N.; Mori T. Thermoelectric Materials and Applications for Energy Harvesting Power Generation. Sci. Technol. Adv. Mater. 2018, 19 (1), 836–862. 10.1080/14686996.2018.1530938. PubMed DOI PMC
Sebald G.; Lefeuvre E.; Guyomar D. Pyroelectric Energy Conversion: Optimization Principles. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 2008, 55 (3), 538–551. 10.1109/TUFFC.2008.680. PubMed DOI
Sebald G.; Guyomar D.; Agbossou A. On Thermoelectric and Pyroelectric Energy Harvesting. Smart Materials and Structures 2009, 18 (12), 125006.10.1088/0964-1726/18/12/125006. DOI
Blevin W. R.; Geist J. Influence of Black Coatings on Pyroelectric Detectors. Appl. Opt. 1974, 13 (5), 1171.10.1364/AO.13.001171. PubMed DOI
Lehman J.; Theocharous E.; Eppeldauer G.; Pannell C. Gold-Black Coatings for Freestanding Pyroelectric Detectors. Measurement Science and Technology 2003, 14 (7), 916–922. 10.1088/0957-0233/14/7/304. DOI
More-Chevalier J.; Yudin P. V.; Cibert C.; Bednyakov P.; Fitl P.; Valenta J.; Novotný M.; Savinov M.; Poupon M.; Zikmund T.; Poullain G.; Lančok J. Black Aluminum-Coated Pt/Pb(Zr 0.56 Ti 0.44)O 3 /Pt Thin Film Structures for Pyroelectric Energy Harvesting from a Light Source. J. Appl. Phys. 2019, 126 (21), 214501.10.1063/1.5130538. DOI
Zabek D.; Seunarine K.; Spacie C.; Bowen C. Graphene Ink Laminate Structures on Poly(Vinylidene Difluoride) (PVDF) for Pyroelectric Thermal Energy Harvesting and Waste Heat Recovery. ACS Appl. Mater. Interfaces 2017, 9 (10), 9161–9167. 10.1021/acsami.6b16477. PubMed DOI
Komatsu R.; Balčytis A.; Seniutinas G.; Yamamura T.; Nishijima Y.; Juodkazis S. Plasmonic Photo-Thermoelectric Energy Converter with Black-Si Absorber. Sol. Energy Mater. Sol. Cells 2015, 143, 72–77. 10.1016/j.solmat.2015.06.035. DOI
Cheng P.; Wang H.; Müller B.; Müller J.; Wang D.; Schaaf P. Photo-Thermoelectric Conversion Using Black Silicon with Enhanced Light Trapping Performance Far beyond the Band Edge Absorption. ACS Appl. Mater. Interfaces 2021, 13 (1), 1818–1826. 10.1021/acsami.0c17279. PubMed DOI
Cheng P.; Döll J.; Wang H.; van Aken P. A.; Wang D.; Schaaf P. Reactive Magnetron Sputtering of Large-Scale 3D Aluminum-Based Plasmonic Nanostructure for Both Light-Induced Thermal Imaging and Photo-Thermoelectric Conversion. Advanced Opt. Mater. 2023, 11, 2202664.10.1002/adom.202202664. DOI
Zhang X.-Y.; Shan F.; Zhou H.-L.; Su D.; Xue X.-M.; Wu J.-Y.; Chen Y.-Z.; Zhao N.; Zhang T. Silver Nanoplate Aggregation Based Multifunctional Black Metal Absorbers for Localization, Photothermic Harnessing Enhancement and Omnidirectional Light Antireflection. J. Mater. Chem. C 2018, 6 (5), 989–999. 10.1039/C7TC04486K. DOI
Vorobyev A. Y.; Guo C. Metallic Light Absorbers Produced by Femtosecond Laser Pulses. Advances in Mechanical Engineering 2010, 2, 452749.10.1155/2010/452749. DOI
Moreau A.; Ciracì C.; Mock J. J.; Hill R. T.; Wang Q.; Wiley B. J.; Chilkoti A.; Smith D. R. Controlled-Reflectance Surfaces with Film-Coupled Colloidal Nanoantennas. Nature 2012, 492 (7427), 86–89. 10.1038/nature11615. PubMed DOI PMC
Bae K.; Kang G.; Cho S. K.; Park W.; Kim K.; Padilla W. J. Flexible Thin-Film Black Gold Membranes with Ultrabroadband Plasmonic Nanofocusing for Efficient Solar Vapour Generation. Nat. Commun. 2015, 6 (1), 10103.10.1038/ncomms10103. PubMed DOI PMC
More-Chevalier J.; Novotný M.; Hruška P.; Fekete L.; Fitl P.; Bulíř J.; Pokorný P.; Volfová L.; Havlová Š.; Vondráček M.; Lančok J. Fabrication of Black Aluminium Thin Films by Magnetron Sputtering. RSC Adv. 2020, 10 (35), 20765–20771. 10.1039/D0RA00866D. PubMed DOI PMC
Hruška P.; More-Chevalier J.; Novotný M.; Čížek J.; Melikhova O.; Fekete L.; Poupon M.; Bulíř J.; Volfová L.; Butterling M.; Liedke M. O.; Wagner A.; Fitl P. Effect of Roughness and Nanoporosity on Optical Properties of Black and Reflective Al Films Prepared by Magnetron Sputtering. J. Alloys Compd. 2021, 872, 159744.10.1016/j.jallcom.2021.159744. DOI
Zheng B.; Wang W.; Jiang G.; Mei X. Fabrication of Broadband Antireflective Black Metal Surfaces with Ultra-Light-Trapping Structures by Picosecond Laser Texturing and Chemical Fluorination. Appl. Phys. B: Laser Opt. 2016, 122 (6), 180.10.1007/s00340-016-6449-1. DOI
Vorobyev A. Y.; Guo C. Colorizing Metals with Femtosecond Laser Pulses. Appl. Phys. Lett. 2008, 92 (4), 041914.10.1063/1.2834902. DOI
Ou Z.; Huang M.; Zhao F. Colorizing Pure Copper Surface by Ultrafast Laser-Induced near-Subwavelength Ripples. Opt. Express 2014, 22 (14), 17254.10.1364/OE.22.017254. PubMed DOI
Huang H.; Yang L.-M.; Bai S.; Liu J. Blackening of Metals Using Femtosecond Fiber Laser. Appl. Opt. 2015, 54 (2), 324.10.1364/AO.54.000324. PubMed DOI
Vorobyev A. Y.; Guo C. Multifunctional Surfaces Produced by Femtosecond Laser Pulses. J. Appl. Phys. 2015, 117 (3), 03310310.1063/1.4905616. DOI
Melikhova O.; Čížek J.; Hruška P.; Lukáč F.; Novotný M.; More-Chevalier J.; Fitl P.; Liedke M. O.; Butterling M.; Wagner A. Microstructure and Nanoscopic Porosity in Black Pd Films. Acta Phys. Polym., A 2020, 137 (2), 222–226. 10.12693/APhysPolA.137.222. DOI
Melikhova O.; Čížek J.; Hruška P.; Liedke M. O.; Butterling M.; Wagner A.; Novotný M.; More-Chevalier J. Study of Nanoscopic Porosity in Black Metals by Positron Annihilation Spectroscopy. Acta Phys. Polym., B 2020, 51 (1), 383.10.5506/APhysPolB.51.383. DOI
Novotný M.; Fitl P.; Sytchkova A.; Bulíř J.; Lančok J.; Pokorný P.; Najdek D.; Bočan J. Pulsed Laser Treatment of Gold and Black Gold Thin Films Fabricated by Thermal Evaporation. Open Physics 2009, 7 (2), 327.10.2478/s11534-009-0027-7. DOI
Alvarez R.; García-Martín J. M.; Macías-Montero M.; Gonzalez-Garcia L.; González J. C.; Rico V.; Perlich J.; Cotrino J.; González-Elipe A. R.; Palmero A. Growth Regimes of Porous Gold Thin Films Deposited by Magnetron Sputtering at Oblique Incidence: From Compact to Columnar Microstructures. Nanotechnology 2013, 24 (4), 04560410.1088/0957-4484/24/4/045604. PubMed DOI
Pokorný P.; Novotný M.; More-Chevalier J.; Dekhtyar Y.; Romanova M.; Davídková M.; Chertopalov S.; Fitl P.; Hruška M.; Kawamura M.; Kiba T.; Lančok J. Surface Processes on Thin Layers of Black Aluminum in Ultra-High Vacuum. Vacuum 2022, 205, 111377.10.1016/j.vacuum.2022.111377. DOI
Romanova M.; More-Chevalier J.; Novotny M.; Pokorny P.; Volfova L.; Fitl P.; Poplausks R.; Dekhtyar Y. Thermal Stability of Black Aluminum Films and Growth of Aluminum Nanowires from Mechanical Defects on the Film Surface during Annealing. Physica Status Solidi (b) 2022, 259, 2100467.10.1002/pssb.202100467. DOI
Corrêa C. A.; More-Chevalier J.; Hruška P.; Poupon M.; Novotný M.; Minárik P.; Hubík P.; Lukáč F.; Fekete L.; Prokop D.; Hanuš J.; Valenta J.; Fitl P.; Lančok J. Microstructure and Physical Properties of Black-Aluminum Antireflective Films. RSC Adv. 2024, 14 (22), 15220–15231. 10.1039/D4RA00396A. PubMed DOI PMC
Pfund A. H. BISMUTH BLACK AND ITS APPLICATIONS. Rev. Sci. Instrum. 1930, 1 (7), 397–399. 10.1063/1.1748708. DOI
Lysenko V. S.; Mal’nev A. F. Optical Characteristics of Metal Blacks. J. Appl. Spectrosc. 1969, 10 (5), 566–570. 10.1007/BF00607815. DOI
Palatnik L. S.; Kovaleva O. I.; Tartakovskaya I. Kh.; Derevyanchenko A. S. Investigation of Low Vacuum Condensates of Aluminum Using Electron Microscopy and Spectroscopy. J. Appl. Spectrosc. 1977, 27 (6), 1524–1526. 10.1007/BF00605537. DOI
Hruška M.; More-Chevalier J.; Fitl P.; Novotný M.; Hruška P.; Prokop D.; Pokorný P.; Kejzlar J.; Gadenne V.; Patrone L.; Vrňata M.; Lančok J. Surface Enhancement Using Black Coatings for Sensor Applications. Nanomaterials 2022, 12 (23), 4297.10.3390/nano12234297. PubMed DOI PMC
Gu S.; Lu Y.; Ding Y.; Li L.; Song H.; Wang J.; Wu Q. A Droplet-Based Microfluidic Electrochemical Sensor Using Platinum-Black Microelectrode and Its Application in High Sensitive Glucose Sensing. Biosens. Bioelectron. 2014, 55, 106–112. 10.1016/j.bios.2013.12.002. PubMed DOI
Fernandez R. E.; Koklu A.; Mansoorifar A.; Beskok A. Platinum Black Electrodeposited Thread Based Electrodes for Dielectrophoretic Assembly of Microparticles. Biomicrofluidics 2016, 10 (3), 03310110.1063/1.4946015. PubMed DOI PMC
Christiansen A. B.; Caringal G. P.; Clausen J. S.; Grajower M.; Taha H.; Levy U.; Asger Mortensen N.; Kristensen A. Black Metal Thin Films by Deposition on Dielectric Antireflective Moth-Eye Nanostructures. Sci. Rep. 2015, 5 (1), 10563.10.1038/srep10563. PubMed DOI PMC
Toor F.; Miller J. B.; Davidson L. M.; Duan W.; Jura M. P.; Yim J.; Forziati J.; Black M. R. Metal Assisted Catalyzed Etched (MACE) Black Si: Optics and Device Physics. Nanoscale 2016, 8 (34), 15448–15466. 10.1039/C6NR04506E. PubMed DOI
Hruška M.; Kejzlar J.; Otta J.; Fitl P.; Novotný M.; Čížek J.; Melikhova O.; Mičušík M.; Machata P.; Vrňata M. Hydrogen Sensing Capabilities of Highly Nanoporous Black Gold Films. Appl. Surf. Sci. 2024, 647, 158618.10.1016/j.apsusc.2023.158618. DOI
Anderson R. E.; Crawford J. R. Aluminum Black Films. Appl. Opt. 1981, 20 (12), 2041.10.1364/AO.20.002041. PubMed DOI
O’Neill P.; Doland A.; Ignat C. The Dependence of Optical Properties on the Structural Composition of Solar Absorbers: Gold Black. Sol. Energy 1978, 21 (6), 465–468. 10.1016/0038-092X(78)90069-5. DOI
Pokorný P.; Novotný M.; Hruška M.; More-Chevalier J.; Fitl P.; Dekhtyar Y.; Romanova M.; Kiba T.; Kawamura M.; Vrňata M.; Vacík J.; Lančok J. Thermally Stimulated Desorption from the Surface of Black Aluminum Layers Prepared by PVD Methods. Vacuum 2024, 227, 113425.10.1016/j.vacuum.2024.113425. DOI
Pokorný P.; Hruška M.; Novotný M.; More-Chevalier J.; Fitl P.; Chertopalov S.; Kiba T.; Kawamura M.; Vrňata M.; Lančok J. Thermally Stimulated Exoelectron Emission from the Surface of Black Aluminum Layers Prepared by PVD Methods. Vacuum 2024, 221, 112880.10.1016/j.vacuum.2023.112880. DOI
Petříček V.; Palatinus L.; Plášil J.; Dušek M. Jana2020–a New Version of the Crystallographic Computing System Jana. Zeitschrift für Kristallographie - Crystalline Materials 2023, 238, 271.10.1515/zkri-2023-0005. DOI
Nečas D.; Klapetek P. Gwyddion: An Open-Source Software for SPM Data Analysis. Open Physics 2012, 10 (1), 181–188. 10.2478/s11534-011-0096-2. DOI
Honnerová P.; Martan J.; Veselý Z.; Honner M. Method for Emissivity Measurement of Semitransparent Coatings at Ambient Temperature. Sci. Rep 2017, 7 (1), 1386.10.1038/s41598-017-01574-x. PubMed DOI PMC
Howell J. R.; Siegel R.; Mengüç M. P.. Thermal Radiation Heat Transfer, 5th ed.; CRC Press: Boca Raton, FL, 2011.
Martan J.; Hervé O.; Lang V. Two-Detector Measurement System of Pulse Photothermal Radiometry for the Investigation of the Thermal Properties of Thin Films. J. Appl. Phys. 2007, 102, 064903.10.1063/1.2778642. DOI
Martan J. Optical Layer Development for Thin Films Thermal Conductivity Measurement by Pulsed Photothermal Radiometry. Rev. Sci. Instrum. 2015, 86 (1), 01490210.1063/1.4904876. PubMed DOI
Proffen T.; Page K. L.; McLain S. E.; Clausen B.; Darling T. W.; TenCate J. A.; Lee S.-Y.; Ustundag E. Atomic Pair Distribution Function Analysis of Materials Containing Crystalline and Amorphous Phases. Zeitschrift für Kristallographie - Crystalline Materials 2005, 220 (12), 1002.10.1524/zkri.2005.220.12.1002. DOI
Biswas R. K.; Khan P.; Mukherjee S.; Mukhopadhyay A. K.; Ghosh J.; Muraleedharan K. Study of Short Range Structure of Amorphous Silica from PDF Using Ag Radiation in Laboratory XRD System, RAMAN and NEXAFS. J. Non-Cryst. Solids 2018, 488, 1–9. 10.1016/j.jnoncrysol.2018.02.037. DOI
Miller P. H.; DuMond J. W. M. Tests for the Validity of the X-Ray Crystal Method for Determining N and e with Aluminum, Silver and Quartz. Phys. Rev. 1940, 57 (3), 198–206. 10.1103/PhysRev.57.198. DOI
Biswas M.; Sahoo A.; Muraleedharan K.; Bandyopadhyay S. Crystal Structure of 27R-SiAlON Synthesized Under Carbothermal Nitridation. Transactions of the Indian Ceramic Society 2021, 80 (1), 1–5. 10.1080/0371750X.2020.1852972. DOI
Paturaud C.; Farges G.; Sainte Catherine M. C.; Machet J. Influence of Particle Energies on the Properties of Magnetron Sputtered Tungsten Films. Surf. Coat. Technol. 1998, 98 (1–3), 1257–1261. 10.1016/S0257-8972(97)00404-0. DOI
Schoderböck P.; Köstenbauer H. Residual Stress Determination in Thin Films by X-Ray Diffraction and the Widespread Analytical Practice Applying a Biaxial Stress Model: An Outdated Oversimplification?. Appl. Surf. Sci. 2021, 541, 148531.10.1016/j.apsusc.2020.148531. DOI
Pletea M.; Koch R.; Wendrock H.; Kaltofen R.; Schmidt O. G. In Situ Stress Evolution during and after Sputter Deposition of Al Thin Films. J. Phys.: Condens. Matter 2009, 21 (22), 225008.10.1088/0953-8984/21/22/225008. PubMed DOI
Abadias G.; Chason E.; Keckes J.; Sebastiani M.; Thompson G. B.; Barthel E.; Doll G. L.; Murray C. E.; Stoessel C. H.; Martinu L. Review Article: Stress in Thin Films and Coatings: Current Status, Challenges, and Prospects. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2018, 36 (2), 02080110.1116/1.5011790. DOI
Windischmann H. Intrinsic Stress in Sputtered Thin Films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 1991, 9 (4), 2431–2436. 10.1116/1.577295. DOI
Gianola D. S.; Mendis B. G.; Cheng X. M.; Hemker K. J. Grain-Size Stabilization by Impurities and Effect on Stress-Coupled Grain Growth in Nanocrystalline Al Thin Films. Materials Science and Engineering: A 2008, 483–484, 637–640. 10.1016/j.msea.2006.12.155. DOI
Tang F.; Gianola D. S.; Moody M. P.; Hemker K. J.; Cairney J. M. Observations of Grain Boundary Impurities in Nanocrystalline Al and Their Influence on Microstructural Stability and Mechanical Behaviour. Acta Mater. 2012, 60 (3), 1038–1047. 10.1016/j.actamat.2011.10.061. DOI
Cougnon F. G.; Dulmaa A.; Dedoncker R.; Galbadrakh R.; Depla D. Impurity Dominated Thin Film Growth. Appl. Phys. Lett. 2018, 112 (22), 221903.10.1063/1.5021528. DOI
Dulmaa A.; Cougnon F. G.; Dedoncker R.; Depla D. On the Grain Size-Thickness Correlation for Thin Films. Acta Mater. 2021, 212, 116896.10.1016/j.actamat.2021.116896. DOI
Petrov I.; Barna P. B.; Hultman L.; Greene J. E. Microstructural Evolution during Film Growth. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2003, 21 (5), S117–S128. 10.1116/1.1601610. DOI
Repän T.; More-Chevalier J.; Martan J.; Hruška P.; Novotný M.; Honnerová P.; Kejzlar J.; Poupon M.; Prokop D.; Fitl P.; Lančok J.; Jaaniso R.. Numerical Investigation of Absorption Mechanisms in Black Aluminum Films. CLEO 2024; Optica Publishing Group: Charlotte, NC, 2024; JTu2A.172,10.1364/CLEO_AT.2024.JTu2A.172. DOI
Ehrenreich H.; Philipp H. R.; Segall B. Optical Properties of Aluminum. Phys. Rev. 1963, 132 (5), 1918–1928. 10.1103/PhysRev.132.1918. DOI
Diest K.; Liberman V.; Lennon D. M.; Welander P. B.; Rothschild M. Aluminum Plasmonics: Optimization of Plasmonic Properties Using Liquid-Prism-Coupled Ellipsometry. Opt. Express 2013, 21 (23), 28638.10.1364/OE.21.028638. PubMed DOI
Novotny M. In-Situ Monitoring of the Growth of Nanostructured Aluminum Thin Film. J. Nanophoton 2011, 5 (1), 05150310.1117/1.3543816. DOI
Schmitt P.; Stempfhuber S.; Felde N.; Szeghalmi A. V.; Kaiser N.; Tünnermann A.; Schwinde S. Influence of Seed Layers on the Reflectance of Sputtered Aluminum Thin Films. Opt. Express 2021, 29 (13), 19472.10.1364/OE.428343. PubMed DOI
Lugolole R.; Obwoya S. K. The Effect of Thickness of Aluminium Films on Optical Reflectance. Journal of Ceramics 2015, 2015, 1–6. 10.1155/2015/213635. DOI
Du H.; Xiao J. Q.; Zou Y. S.; Wang T. G.; Gong J.; Sun C.; Wen L. S. Optical Properties of Ultrathin Aluminum Films Deposited by Magnetron Sputtering in Visible Band. Opt. Mater. 2006, 28 (8–9), 944–949. 10.1016/j.optmat.2005.04.011. DOI
Lindseth I.; Bardal A.; Spooren R. Reflectance Measurements of Aluminium Surfaces Using Integrating Spheres. Optics and Lasers in Engineering 1999, 32, 419.10.1016/S0143-8166(00)00010-5. DOI
Rincón-Llorente G.; Heras I.; Guillén Rodríguez E.; Schumann E.; Krause M.; Escobar-Galindo R. On the Effect of Thin Film Growth Mechanisms on the Specular Reflectance of Aluminium Thin Films Deposited via Filtered Cathodic Vacuum Arc. Coatings 2018, 8 (9), 321.10.3390/coatings8090321. DOI
Chen Y.; Xin X.; Zhang N.; Xu Y.-J. Aluminum-Based Plasmonic Photocatalysis. Particle and Particle System Characterization 2017, 34, 1600357.10.1002/ppsc.201600357. DOI
Park J.; Son K.; Lee J.; Kim D.; Chung W. Effects of Anodizing Conditions on Thermal Properties of Al 20XX Alloys for Aircraft. Symmetry 2021, 13 (3), 433.10.3390/sym13030433. DOI
Zhang K.; Yu K.; Liu Y.; Zhao Y. Effect of Surface Oxidation on Emissivity Properties of Pure Aluminum in the near Infrared Region. Mater. Res. Express 2017, 4 (8), 08650110.1088/2053-1591/aa7fc9. DOI
Wen C.-D.; Mudawar I. Experimental Investigation of Emissivity of Aluminum Alloys and Temperature Determination Using Multispectral Radiation Thermometry (MRT) Algorithms. Journal of Materials Engineering and Performance 2002, 11 (5), 551–562. 10.1361/105994902770343818. DOI
Muley S. V.; Ravindra N. M. Emissivity of Electronic Materials, Coatings, and Structures. JOM 2014, 66 (4), 616–636. 10.1007/s11837-014-0940-0. DOI
Zhang T.; Dong W.; Wang Z. Y.; Yi X. S.; Zhao Y.; Yuan Z. D.; Zhao Y. L. Investigation of Infrared Spectral Emissivity of Low Emittance Functional Coating Artefacts. Infrared Physics & Technology 2020, 110, 103454.10.1016/j.infrared.2020.103454. DOI
Zhang S. Y.; Shen F. Z.; Liu H. M.; Huang C. J.; Li L. F. The Experimental Measurement of the Thermal Emissivity of a Black Coating from 50 to 300 K. IOP Conf. Ser.: Mater. Sci. Eng. 2022, 1241 (1), 01205310.1088/1757-899X/1241/1/012053. DOI
Seronde F.; Echegut P.; Coutures J. P.; Gervais F. Emissivity of Oxides: A Microscopic Approach to Glass Coatings. Materials Science and Engineering: B 1991, 8 (4), 315–327. 10.1016/0921-5107(91)90053-X. DOI
González De Arrieta I.; Echániz T.; Fuente R.; Rubin E.; Chen R.; Igartua J. M.; Tello M. J.; López G. A. Infrared Emissivity of Copper-Alloyed Spinel Black Coatings for Concentrated Solar Power Systems. Sol. Energy Mater. Sol. Cells 2019, 200, 109961.10.1016/j.solmat.2019.109961. DOI
Kumagai T.; To N.; Balčytis A.; Seniutinas G.; Juodkazis S.; Nishijima Y. Kirchhoff’s Thermal Radiation from Lithography-Free Black Metals. Micromachines 2020, 11 (9), 824.10.3390/mi11090824. PubMed DOI PMC
Guo J.; Guo X.; Xu W.; Zhang Z.; Dong J.; Peng L.; Ding W. A Zn-Ni Coating with Both High Electrical Conductivity and Infrared Emissivity Prepared by Hydrogen Evolution Method. Appl. Surf. Sci. 2017, 402, 92–98. 10.1016/j.apsusc.2017.01.053. DOI
Zhang A.; Li Y. Thermal Conductivity of Aluminum Alloys—A Review. Materials 2023, 16 (8), 2972.10.3390/ma16082972. PubMed DOI PMC
Friesen C.; Seel S. C.; Thompson C. V. Reversible Stress Changes at All Stages of Volmer–Weber Film Growth. J. Appl. Phys. 2004, 95 (3), 1011–1020. 10.1063/1.1637728. DOI
Yagi T.; Oka N.; Okabe T.; Taketoshi N.; Baba T.; Shigesato Y. Effect of Oxygen Impurities on Thermal Diffusivity of AlN Thin Films Deposited by Reactive RF Magnetron Sputtering. Jpn. J. Appl. Phys. 2011, 50 (11S), 11RB01.10.1143/JJAP.50.11RB01. DOI
Jaramillo-Fernandez J.; Ordonez-Miranda J.; Ollier E.; Volz S. Tunable Thermal Conductivity of Thin Films of Polycrystalline AlN by Structural Inhomogeneity and Interfacial Oxidation. Phys. Chem. Chem. Phys. 2015, 17 (12), 8125–8137. 10.1039/C4CP05838K. PubMed DOI
Wolf A.; Brendel R. Thermal Conductivity of Sintered Porous Silicon Films. Thin Solid Films 2006, 513 (1–2), 385–390. 10.1016/j.tsf.2006.01.073. DOI
Ansari M. A. Modelling of Size-Dependent Thermodynamic Properties of Metallic Nanocrystals Based on Modified Gibbs–Thomson Equation. Appl. Phys. A: Mater. Sci. Process. 2021, 127 (5), 385.10.1007/s00339-021-04535-4. DOI
Yoshida M.; Utsumi N.; Ichiki R.; Kong J. H.; Okumiya M. Surface Structure and Emissivity of Aluminum Nitride Films. AMR 2015, 1110, 163–168. 10.4028/www.scientific.net/AMR.1110.163. DOI