Fabrication of black aluminium thin films by magnetron sputtering
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35517742
PubMed Central
PMC9054304
DOI
10.1039/d0ra00866d
PII: d0ra00866d
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Black aluminium thin films were prepared by direct current (DC) pulsed magnetron sputtering. The N2 concentration in the Ar-N2 mixture that was used as the deposition atmosphere was varied from 0 to 10%, and its impact on the film growth and optical properties was studied. A strong change in the film growth process was observed as a function of the N2 concentration. At a specific N2 concentration of ∼6%, the Al film growth process favoured the formation of a moth-eye-like antireflective surface. This surface morphology, which was similar to the structure of a cauliflower, is known to trap incident light, resulting in films with a very low reflectivity. A diffuse reflectivity lower than 4% was reached in the ultraviolet-visible-near infrared (UV-VIS-NIR) spectral range that corresponds to a value observed for an ultrahigh absorber. We found that for the preparation of black aluminium, the nitrogen content plays an important role in film formation and the resulting film morphology.
Faculty of Mathematics and Physics Charles University Ke Karlovu 3 12116 Praha 2 Czech Republic
Faculty of Science Charles University Hlavova 2030 8 12843 Praha 2 Czech Republic
Zobrazit více v PubMed
Zaeschmar G. Nedoluha A. J. Opt. Soc. Am. 1972;62:348. doi: 10.1364/JOSA.62.000348. DOI
Pfund A. H. Rev. Sci. Instrum. 1930;1:397–399. doi: 10.1063/1.1748708. DOI
Lysenko V. S. Malnev A. F. Zh. Prikl. Spektrosk. 1969;10:838.
Strimer P. Gerbaux X. Hadni A. Souel T. Infrared Phys. 1981;21:37–39. doi: 10.1016/0020-0891(81)90007-5. DOI
Wang C. M. Chen Y. C. Lee M. S. Chen K. J. Jpn. J. Appl. Phys., Part 1. 2000;39:551–554. doi: 10.1143/JJAP.39.551. DOI
Christiansen A. B. Caringal G. P. Clausen J. S. Grajower M. Taha H. Levy U. Mortensen N. A. Kristensen A. Sci. Rep. 2015;5:10563. doi: 10.1038/srep10563. PubMed DOI PMC
Gu S. Lu Y. Ding Y. Li L. Song H. Wang J. Wu Q. Biosens. Bioelectron. 2014;55:106–112. doi: 10.1016/j.bios.2013.12.002. PubMed DOI
Mills A. Platinum Met. Rev. 2007;51:52. doi: 10.1595/147106707X176210. DOI
Zhang X. Y. Shan F. Zhou H. L. Su D. Xue X. M. Wu J. Y. Chen Y. Z. Zhao N. Zhang T. J. Mater. Chem. C. 2018;6:989–999. doi: 10.1039/C7TC04486K. DOI
Huang H. Yang L. M. Liu J. Proc. SPIE. 2013;8876:88760M. doi: 10.1117/12.2026244. DOI
Vorobyev A. Y. Guo C. L. Adv. Mech. Eng. 2010;2:452749. doi: 10.1155/2010/452749. DOI
Fernandez R. E. Koklu A. Mansoorifar A. Beskok A. Biomicrofluidics. 2016;10:033101. doi: 10.1063/1.4946015. PubMed DOI PMC
More-Chevalier J. Yudin P. V. Cibert C. Bednyakov P. Fitl P. Valenta J. Novotný M. Savinov M. Poupon M. Zikmund T. Poullain G. Lančok J. J. Appl. Phys. 2019;126:214501. doi: 10.1063/1.5130538. DOI
Anderson R. E. Crawford J. R. Appl. Opt. 1981;20:2041–2042. doi: 10.1364/AO.20.002041. PubMed DOI
O'Neill P. Ignatiev A. Doland C. Sol. Energy. 1978;21:465–468. doi: 10.1016/0038-092X(78)90069-5. DOI
Palatnik L. S. Kovaleva O. I. Tartakovskaya I. K. Derevyanchenko A. S. J. Appl. Spectrosc. 1977;27:1524–1526. doi: 10.1007/BF00605537. DOI
Betts D. B. Clarke F. J. J. Cox L. J. Larkin J. A. J. Phys. E: Sci. Instrum. 1985;18:689–696. doi: 10.1088/0022-3735/18/8/010. DOI
Hu X. F. Qin S. Y. Tian J. F. Hu M. F. Sol. Energy Mater. 1988;17:207–215. doi: 10.1016/0165-1633(88)90027-5. DOI
Milligan W. O. Focke A. B. J. Phys. Chem. 1941;45:107–111. doi: 10.1021/j150406a009. DOI
Novotny M. Bulir J. Lancok J. Pokorny P. Czech Rep. 2017:307110.
Vitrey A. Alvarez R. Palmero A. Gonzalez M. U. Garcia-Martin J. M. Beilstein J. Nanotechnol. 2017;8:434–439. doi: 10.3762/bjnano.8.46. PubMed DOI PMC
Alvarez R. García-Martín J. M. Macías-Montero M. Gonzalez-Garcia L. González J. C. Rico V. Perlich J. Cotrino J. González-Elipe A. R. Palmero A. Nanotechnology. 2013;24:045604. doi: 10.1088/0957-4484/24/4/045604. PubMed DOI
Toor F. Miller J. B. Davidson L. M. Duan W. Jura M. P. Yim J. Forziati J. Black M. R. Nanoscale. 2016;8:15448–15466. doi: 10.1039/C6NR04506E. PubMed DOI
Zheng B. X. Wang W. J. Jiang G. D. Mei X. S. Appl. Phys. B: Lasers Opt. 2016;122:180. doi: 10.1007/s00340-016-6449-1. DOI
Wobbeking K. Li M. J. Hubner E. G. Schade W. RSC Adv. 2019;9:37598–37607. doi: 10.1039/C9RA05918K. PubMed DOI PMC
Rehrig D. L. Plating. 1974;61:43.
Novotny M. Fitl P. Sytchkova A. K. Bulir J. Lancok J. Pokorny P. Najdek D. Bocan J. Cent. Eur. J. Phys. 2009;7:327–331.
Georges C. Sanchez H. Semmar N. Boulmer-Leborgne C. Perrin C. Simon D. Appl. Surf. Sci. 2002;186:117–123. doi: 10.1016/S0169-4332(01)00605-5. DOI
Pokorný P. Musil J. Fitl P. Novotný M. Lančok J. Bulíř J. Plasma Processes Polym. 2015;12:416–421. doi: 10.1002/ppap.201400172. DOI
Rietveld H. M. Acta Crystallogr. 1967;22:151–152. doi: 10.1107/S0365110X67000234. DOI
Hill R. J. Howard C. J. J. Appl. Crystallogr. 1987;20:467–474. doi: 10.1107/S0021889887086199. DOI
Miller P. H. DuMond J. W. M. Phys. Rev. 1940;57:198–206. doi: 10.1103/PhysRev.57.198. DOI
Zhou Y. M. Xie Z. Xiao H. N. Hu P. F. He J. J. Vac. Sci. Technol. 2009;27:109–113. doi: 10.1116/1.3046143. DOI
Singh C. K. Ilango S. Polaki S. R. Dash S. Tyagi A. K. Mater. Res. Express. 2014;1:036401. doi: 10.1088/2053-1591/1/3/036401. DOI
Zhou Y. M. Xie Z. Xiao H. N. Hu P. F. He J. Vacuum. 2008;83:286–291. doi: 10.1016/j.vacuum.2008.07.002. DOI
Yu H. Z. Thompson C. V. J. Vac. Sci. Technol., A. 2015;33:021504. doi: 10.1116/1.4902957. DOI
Cougnon F. G. Dulmaa A. Dedoncker R. Galbadrakh R. Depla D. Appl. Phys. Lett. 2018;112:221903. doi: 10.1063/1.5021528. DOI
Petrov I. Barna P. B. Hultman L. Greene J. E. J. Vac. Sci. Technol. 2003;21:S117–S128. doi: 10.1116/1.1601610. DOI
Piao H. McIntyre N. S. Surf. Interface Anal. 2002;33:591–594. doi: 10.1002/sia.1425. DOI
Dean J. A. and Lange N. A., Lange's Handbook of Chemistry, McGraw-Hill, 1999
Ehrenreich H. Philipp H. R. Segall B. Phys. Rev. 1963;132:1918–1928. doi: 10.1103/PhysRev.132.1918. DOI
Diest K. Liberman V. Lennon D. M. Welander P. B. Rothschild M. Opt. Express. 2013;21:28638–28650. doi: 10.1364/OE.21.028638. PubMed DOI
Novotny M. Bulir J. Lancok J. Pokorny P. Bodnar M. J. Nanophotonics. 2011;5:051503. doi: 10.1117/1.3543816. DOI
Kotsedi L. Mthunzi P. Nuru Z. Y. Eaton S. M. Sechoghela P. Mongwaketsi N. Ramponi R. Maaza M. Appl. Surf. Sci. 2015;353:1334–1341. doi: 10.1016/j.apsusc.2015.08.047. DOI
Vorobyev A. Y. Guo C. J. Appl. Phys. 2008;104:053516. doi: 10.1063/1.2975989. DOI
Wilson S. J. Hutley M. C. Opt. Acta. 1982;29:993–1009. doi: 10.1080/713820946. DOI
Thompson C. V. Annu. Rev. Mater. Sci. 2000;30:159–190. doi: 10.1146/annurev.matsci.30.1.159. DOI
Grovenor C. R. M. Hentzell H. T. G. Smith D. A. Acta Metall. Mater. 1984;32:773–781. doi: 10.1016/0001-6160(84)90150-0. DOI
Novotny M. Bulir J. Pokorny P. Bocan J. Fitl P. Lancok J. Musil J. J. Optoelectron. Adv. Mater. 2010;12:697–700.
Pokorny P. Bulir J. Lancok J. Musil J. Novotny M. Plasma Processes Polym. 2010;7:910–914. doi: 10.1002/ppap.201000064. DOI
Moelans N. Blanpain B. Wollants P. Acta Mater. 2007;55:2173–2182. doi: 10.1016/j.actamat.2006.11.018. DOI
Melikhova O. Cizek J. Hruska P. Liedke M. O. Butterling M. Wagner A. Novotny M. More-Chevalier J. Acta Phys. Pol., B. 2020;51:383–387.
Spectral Emissivity and Thermal Conductivity Properties of Black Aluminum Films
Microstructure and physical properties of black-aluminum antireflective films
Surface Enhancement Using Black Coatings for Sensor Applications