Fabrication of black aluminium thin films by magnetron sputtering

. 2020 May 27 ; 10 (35) : 20765-20771. [epub] 20200601

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35517742

Black aluminium thin films were prepared by direct current (DC) pulsed magnetron sputtering. The N2 concentration in the Ar-N2 mixture that was used as the deposition atmosphere was varied from 0 to 10%, and its impact on the film growth and optical properties was studied. A strong change in the film growth process was observed as a function of the N2 concentration. At a specific N2 concentration of ∼6%, the Al film growth process favoured the formation of a moth-eye-like antireflective surface. This surface morphology, which was similar to the structure of a cauliflower, is known to trap incident light, resulting in films with a very low reflectivity. A diffuse reflectivity lower than 4% was reached in the ultraviolet-visible-near infrared (UV-VIS-NIR) spectral range that corresponds to a value observed for an ultrahigh absorber. We found that for the preparation of black aluminium, the nitrogen content plays an important role in film formation and the resulting film morphology.

Zobrazit více v PubMed

Zaeschmar G. Nedoluha A. J. Opt. Soc. Am. 1972;62:348. doi: 10.1364/JOSA.62.000348. DOI

Pfund A. H. Rev. Sci. Instrum. 1930;1:397–399. doi: 10.1063/1.1748708. DOI

Lysenko V. S. Malnev A. F. Zh. Prikl. Spektrosk. 1969;10:838.

Strimer P. Gerbaux X. Hadni A. Souel T. Infrared Phys. 1981;21:37–39. doi: 10.1016/0020-0891(81)90007-5. DOI

Wang C. M. Chen Y. C. Lee M. S. Chen K. J. Jpn. J. Appl. Phys., Part 1. 2000;39:551–554. doi: 10.1143/JJAP.39.551. DOI

Christiansen A. B. Caringal G. P. Clausen J. S. Grajower M. Taha H. Levy U. Mortensen N. A. Kristensen A. Sci. Rep. 2015;5:10563. doi: 10.1038/srep10563. PubMed DOI PMC

Gu S. Lu Y. Ding Y. Li L. Song H. Wang J. Wu Q. Biosens. Bioelectron. 2014;55:106–112. doi: 10.1016/j.bios.2013.12.002. PubMed DOI

Mills A. Platinum Met. Rev. 2007;51:52. doi: 10.1595/147106707X176210. DOI

Zhang X. Y. Shan F. Zhou H. L. Su D. Xue X. M. Wu J. Y. Chen Y. Z. Zhao N. Zhang T. J. Mater. Chem. C. 2018;6:989–999. doi: 10.1039/C7TC04486K. DOI

Huang ​H. Yang L. M. Liu J. Proc. SPIE. 2013;8876:88760M. doi: 10.1117/12.2026244. DOI

Vorobyev A. Y. Guo C. L. Adv. Mech. Eng. 2010;2:452749. doi: 10.1155/2010/452749. DOI

Fernandez R. E. Koklu A. Mansoorifar A. Beskok A. Biomicrofluidics. 2016;10:033101. doi: 10.1063/1.4946015. PubMed DOI PMC

More-Chevalier J. Yudin P. V. Cibert C. Bednyakov P. Fitl P. Valenta J. Novotný M. Savinov M. Poupon M. Zikmund T. Poullain G. Lančok J. J. Appl. Phys. 2019;126:214501. doi: 10.1063/1.5130538. DOI

Anderson R. E. Crawford J. R. Appl. Opt. 1981;20:2041–2042. doi: 10.1364/AO.20.002041. PubMed DOI

O'Neill P. Ignatiev A. Doland C. Sol. Energy. 1978;21:465–468. doi: 10.1016/0038-092X(78)90069-5. DOI

Palatnik L. S. Kovaleva O. I. Tartakovskaya I. K. Derevyanchenko A. S. J. Appl. Spectrosc. 1977;27:1524–1526. doi: 10.1007/BF00605537. DOI

Betts D. B. Clarke F. J. J. Cox L. J. Larkin J. A. J. Phys. E: Sci. Instrum. 1985;18:689–696. doi: 10.1088/0022-3735/18/8/010. DOI

Hu X. F. Qin S. Y. Tian J. F. Hu M. F. Sol. Energy Mater. 1988;17:207–215. doi: 10.1016/0165-1633(88)90027-5. DOI

Milligan W. O. Focke A. B. J. Phys. Chem. 1941;45:107–111. doi: 10.1021/j150406a009. DOI

Novotny ​M. Bulir J. Lancok J. Pokorny P. Czech Rep. 2017:307110.

Vitrey A. Alvarez R. Palmero A. Gonzalez M. U. Garcia-Martin J. M. Beilstein J. Nanotechnol. 2017;8:434–439. doi: 10.3762/bjnano.8.46. PubMed DOI PMC

Alvarez R. García-Martín J. M. Macías-Montero M. Gonzalez-Garcia L. González J. C. Rico V. Perlich J. Cotrino J. González-Elipe A. R. Palmero A. Nanotechnology. 2013;24:045604. doi: 10.1088/0957-4484/24/4/045604. PubMed DOI

Toor F. Miller J. B. Davidson L. M. Duan W. Jura M. P. Yim J. Forziati J. Black M. R. Nanoscale. 2016;8:15448–15466. doi: 10.1039/C6NR04506E. PubMed DOI

Zheng B. X. Wang W. J. Jiang G. D. Mei X. S. Appl. Phys. B: Lasers Opt. 2016;122:180. doi: 10.1007/s00340-016-6449-1. DOI

Wobbeking K. Li M. J. Hubner E. G. Schade W. RSC Adv. 2019;9:37598–37607. doi: 10.1039/C9RA05918K. PubMed DOI PMC

Rehrig D. L. Plating. 1974;61:43.

Novotny M. Fitl P. Sytchkova A. K. Bulir J. Lancok J. Pokorny P. Najdek D. Bocan J. Cent. Eur. J. Phys. 2009;7:327–331.

Georges C. Sanchez H. Semmar N. Boulmer-Leborgne C. Perrin C. Simon D. Appl. Surf. Sci. 2002;186:117–123. doi: 10.1016/S0169-4332(01)00605-5. DOI

Pokorný P. Musil J. Fitl P. Novotný M. Lančok J. Bulíř J. Plasma Processes Polym. 2015;12:416–421. doi: 10.1002/ppap.201400172. DOI

Rietveld H. M. Acta Crystallogr. 1967;22:151–152. doi: 10.1107/S0365110X67000234. DOI

Hill R. J. Howard C. J. J. Appl. Crystallogr. 1987;20:467–474. doi: 10.1107/S0021889887086199. DOI

Miller P. H. DuMond J. W. M. Phys. Rev. 1940;57:198–206. doi: 10.1103/PhysRev.57.198. DOI

Zhou Y. M. Xie Z. Xiao H. N. Hu P. F. He J. J. Vac. Sci. Technol. 2009;27:109–113. doi: 10.1116/1.3046143. DOI

Singh C. K. Ilango S. Polaki S. R. Dash S. Tyagi A. K. Mater. Res. Express. 2014;1:036401. doi: 10.1088/2053-1591/1/3/036401. DOI

Zhou Y. M. Xie Z. Xiao H. N. Hu P. F. He J. Vacuum. 2008;83:286–291. doi: 10.1016/j.vacuum.2008.07.002. DOI

Yu H. Z. Thompson C. V. J. Vac. Sci. Technol., A. 2015;33:021504. doi: 10.1116/1.4902957. DOI

Cougnon F. G. Dulmaa A. Dedoncker R. Galbadrakh R. Depla D. Appl. Phys. Lett. 2018;112:221903. doi: 10.1063/1.5021528. DOI

Petrov I. Barna P. B. Hultman L. Greene J. E. J. Vac. Sci. Technol. 2003;21:S117–S128. doi: 10.1116/1.1601610. DOI

Piao H. McIntyre N. S. Surf. Interface Anal. 2002;33:591–594. doi: 10.1002/sia.1425. DOI

Dean J. A. and Lange N. A., Lange's Handbook of Chemistry, McGraw-Hill, 1999

Ehrenreich H. Philipp H. R. Segall B. Phys. Rev. 1963;132:1918–1928. doi: 10.1103/PhysRev.132.1918. DOI

Diest K. Liberman V. Lennon D. M. Welander P. B. Rothschild M. Opt. Express. 2013;21:28638–28650. doi: 10.1364/OE.21.028638. PubMed DOI

Novotny M. Bulir J. Lancok J. Pokorny P. Bodnar M. J. Nanophotonics. 2011;5:051503. doi: 10.1117/1.3543816. DOI

Kotsedi L. Mthunzi P. Nuru Z. Y. Eaton S. M. Sechoghela P. Mongwaketsi N. Ramponi R. Maaza M. Appl. Surf. Sci. 2015;353:1334–1341. doi: 10.1016/j.apsusc.2015.08.047. DOI

Vorobyev A. Y. Guo C. J. Appl. Phys. 2008;104:053516. doi: 10.1063/1.2975989. DOI

Wilson S. J. Hutley M. C. Opt. Acta. 1982;29:993–1009. doi: 10.1080/713820946. DOI

Thompson C. V. Annu. Rev. Mater. Sci. 2000;30:159–190. doi: 10.1146/annurev.matsci.30.1.159. DOI

Grovenor C. R. M. Hentzell H. T. G. Smith D. A. Acta Metall. Mater. 1984;32:773–781. doi: 10.1016/0001-6160(84)90150-0. DOI

Novotny M. Bulir J. Pokorny P. Bocan J. Fitl P. Lancok J. Musil J. J. Optoelectron. Adv. Mater. 2010;12:697–700.

Pokorny P. Bulir J. Lancok J. Musil J. Novotny M. Plasma Processes Polym. 2010;7:910–914. doi: 10.1002/ppap.201000064. DOI

Moelans N. Blanpain B. Wollants P. Acta Mater. 2007;55:2173–2182. doi: 10.1016/j.actamat.2006.11.018. DOI

Melikhova O. Cizek J. Hruska P. Liedke M. O. Butterling M. Wagner A. Novotny M. More-Chevalier J. Acta Phys. Pol., B. 2020;51:383–387.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Spectral Emissivity and Thermal Conductivity Properties of Black Aluminum Films

. 2025 Feb 18 ; 41 (6) : 3832-3842. [epub] 20250101

Microstructure and physical properties of black-aluminum antireflective films

. 2024 May 10 ; 14 (22) : 15220-15231. [epub] 20240510

Surface Enhancement Using Black Coatings for Sensor Applications

. 2022 Dec 03 ; 12 (23) : . [epub] 20221203

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...