Surface Enhancement Using Black Coatings for Sensor Applications

. 2022 Dec 03 ; 12 (23) : . [epub] 20221203

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36500920

Grantová podpora
JP22420 International Visegrad Fund
SOLID21 CZ.02.1.01/0.0/0.0/16_019/0000760 Ministry of Education, Youth and Sports of the Czech Republic
8F21008 Ministry of Education, Youth and Sports of the Czech Republic
8J22FR023 Ministry of Education, Youth and Sports of the Czech Republic
22-14886S Czech Science Foundation
21-09685S Czech Science Foundation

The resolution of a quartz crystal microbalance (QCM) is particularly crucial for gas sensor applications where low concentrations are detected. This resolution can be improved by increasing the effective surface of QCM electrodes and, thereby, enhancing their sensitivity. For this purpose, various researchers have investigated the use of micro-structured materials with promising results. Herein, we propose the use of easy-to-manufacture metal blacks that are highly structured even on a nanoscale level and thus provide more bonding sites for gas analytes. Two different black metals with thicknesses of 280 nm, black aluminum (B-Al) and black gold (B-Au), were deposited onto the sensor surface to improve the sensitivity following the Sauerbrey equation. Both layers present a high surface roughness due to their cauliflower morphology structure. A high response (i.e., resonant frequency shift) of these QCM sensors coated with a black metal layer was obtained. Two gaseous analytes, H2O vapor and EtOH vapor, at different concentrations, are tested, and a distinct improvement of sensitivity is observed for the QCM sensors coated with a black metal layer compared to the blank ones, without strong side effects on resonance frequency stability or mechanical quality factor. An approximately 10 times higher sensitivity to EtOH gas is reported for the QCM coated with a black gold layer compared to the blank QCM sensor.

Zobrazit více v PubMed

Sauerbrey G. Verwendung von Schwingquarzen Zur Wagung Dunner Schichten Und Zur Mikrowagung. Z. Fiir Phys. 1959;155:206–222. doi: 10.1007/BF01337937. DOI

Cooper M.A., Singleton V.T. A Survey of the 2001 to 2005 Quartz Crystal Microbalance Biosensor Literature: Applications of Acoustic Physics to the Analysis of Biomolecular Interactions. J. Mol. Recognit. 2007;20:154–184. doi: 10.1002/jmr.826. PubMed DOI

Becker B., Cooper M.A. A Survey of the 2006-2009 Quartz Crystal Microbalance Biosensor Literature. J. Mol. Recognit. 2011;24:754–787. doi: 10.1002/jmr.1117. PubMed DOI

Speight R.E., Cooper M.A. A Survey of the 2010 Quartz Crystal Microbalance Literature: A Survey of the 2010 Quartz Crystal Microbalance Literature. J. Mol. Recognit. 2012;25:451–473. doi: 10.1002/jmr.2209. PubMed DOI

Röck F., Barsan N., Weimar U. Electronic Nose: Current Status and Future Trends. Chem. Rev. 2008;108:705–725. doi: 10.1021/cr068121q. PubMed DOI

Rodríguez-Torres M., Altuzar V., Mendoza-Barrera C., Beltrán-Pérez G., Castillo-Mixcóatl J., Muñoz-Aguirre S. Discrimination Improvement of a Gas Sensors’ Array Using High-Frequency Quartz Crystal Microbalance Coated with Polymeric Films. Sensors. 2020;20:6972. doi: 10.3390/s20236972. PubMed DOI PMC

Fernández R., Calero M., Jiménez Y., Arnau A. A Real-Time Method for Improving Stability of Monolithic Quartz Crystal Microbalance Operating under Harsh Environmental Conditions. Sensors. 2021;21:4166. doi: 10.3390/s21124166. PubMed DOI PMC

Feng S., Farha F., Li Q., Wan Y., Xu Y., Zhang T., Ning H. Review on Smart Gas Sensing Technology. Sensors. 2019;19:3760. doi: 10.3390/s19173760. PubMed DOI PMC

Barbosa A.J.M., Oliveira A.R., Roque A.C.A. Protein-and Peptide-Based Biosensors in Artificial Olfaction. Trends Biotechnol. 2018;36:1244–1258. doi: 10.1016/j.tibtech.2018.07.004. PubMed DOI PMC

Khadka R., Aydemir N., Carraher C., Hamiaux C., Colbert D., Cheema J., Malmström J., Kralicek A., Travas-Sejdic J. An Ultrasensitive Electrochemical Impedance-Based Biosensor Using Insect Odorant Receptors to Detect Odorants. Biosens. Bioelectron. 2019;126:207–213. doi: 10.1016/j.bios.2018.10.043. PubMed DOI

More-Chevalier J., Novotný M., Hruška P., Fekete L., Fitl P., Bulíř J., Pokorný P., Volfová L., Havlová Š., Vondráček M., et al. Fabrication of Black Aluminium Thin Films by Magnetron Sputtering. RSC Adv. 2020;10:20765–20771. doi: 10.1039/D0RA00866D. PubMed DOI PMC

Hruška P. Effect of Roughness and Nanoporosity on Optical Properties of Black and Reflective Al Films Prepared by Magnetron Sputtering. J. Alloy. Compd. 2021;9:159744. doi: 10.1016/j.jallcom.2021.159744. DOI

Novotný M., Fitl P., Sytchkova A., Bulíř J., Lančok J., Pokorný P., Najdek D., Bočan J. Pulsed Laser Treatment of Gold and Black Gold Thin Films Fabricated by Thermal Evaporation. Open Phys. 2009;7:327. doi: 10.2478/s11534-009-0027-7. DOI

Zhang X.-Y., Shan F., Zhou H.-L., Su D., Xue X.-M., Wu J.-Y., Chen Y.-Z., Zhao N., Zhang T. Silver Nanoplate Aggregation Based Multifunctional Black Metal Absorbers for Localization, Photothermic Harnessing Enhancement and Omnidirectional Light Antireflection. J. Mater. Chem. C. 2018;6:989–999. doi: 10.1039/C7TC04486K. DOI

Christiansen A.B., Caringal G.P., Clausen J.S., Grajower M., Taha H., Levy U., Asger Mortensen N., Kristensen A. Black Metal Thin Films by Deposition on Dielectric Antireflective Moth-Eye Nanostructures. Sci. Rep. 2015;5:10563. doi: 10.1038/srep10563. PubMed DOI PMC

Strimer P., Gerbaux X., Hadni A., Souel T. Black Coatings for Infrared and Visible, with High Electrical Resistivity. Infrared Phys. 1981;21:37–39. doi: 10.1016/0020-0891(81)90007-5. DOI

Lysenko V.S., Mal’nev A.F. Optical Characteristics of Metal Blacks. J. Appl. Spectrosc. 1969;10:566–570. doi: 10.1007/BF00607815. DOI

Qiu J., Wei W.D. Surface Plasmon-Mediated Photothermal Chemistry. J. Phys. Chem. C. 2014;118:20735–20749. doi: 10.1021/jp5042553. DOI

Wang C.-M., Chen Y.-C., Lee M.-S., Chen K.-J. Microstructure and Absorption Property of Silver-Black Coatings. Jpn. J. Appl. Phys. 2000;39:551–554. doi: 10.1143/JJAP.39.551. DOI

Gu S., Lu Y., Ding Y., Li L., Song H., Wang J., Wu Q. A Droplet-Based Microfluidic Electrochemical Sensor Using Platinum-Black Microelectrode and Its Application in High Sensitive Glucose Sensing. Biosens. Bioelectron. 2014;55:106–112. doi: 10.1016/j.bios.2013.12.002. PubMed DOI

Liu X., Coxon P.R., Peters M., Hoex B., Cole J.M., Fray D.J. Black Silicon: Fabrication Methods, Properties and Solar Energy Applications. Energy Environ. Sci. 2014;7:3223–3263. doi: 10.1039/C4EE01152J. DOI

Vorobyev A.Y., Guo C. Metallic Light Absorbers Produced by Femtosecond Laser Pulses. Adv. Mech. Eng. 2010;2:452749. doi: 10.1155/2010/452749. DOI

Moreau A., Ciracì C., Mock J.J., Hill R.T., Wang Q., Wiley B.J., Chilkoti A., Smith D.R. Controlled-Reflectance Surfaces with Film-Coupled Colloidal Nanoantennas. Nature. 2012;492:86–89. doi: 10.1038/nature11615. PubMed DOI PMC

Bae K., Kang G., Cho S.K., Park W., Kim K., Padilla W.J. Flexible Thin-Film Black Gold Membranes with Ultrabroadband Plasmonic Nanofocusing for Efficient Solar Vapour Generation. Nat. Commun. 2015;6:10103. doi: 10.1038/ncomms10103. PubMed DOI PMC

More-Chevalier J., Yudin P.V., Cibert C., Bednyakov P., Fitl P., Valenta J., Novotný M., Savinov M., Poupon M., Zikmund T., et al. Black Aluminum-Coated Pt/Pb(Zr0.56 Ti0.44)O3/Pt Thin Film Structures for Pyroelectric Energy Harvesting from a Light Source. J. Appl. Phys. 2019;126:214501. doi: 10.1063/1.5130538. DOI

Yang W., Zheng X.-G., Wang S.-G., Jin H.-J. Nanoporous Aluminum by Galvanic Replacement: Dealloying and Inward-Growth Plating. J. Electrochem. Soc. 2018;165:C492–C496. doi: 10.1149/2.0881809jes. DOI

Garoli D., Schirato A., Giovannini G., Cattarin S., Ponzellini P., Calandrini E., Proietti Zaccaria R., D’Amico F., Pachetti M., Yang W., et al. Galvanic Replacement Reaction as a Route to Prepare Nanoporous Aluminum for UV Plasmonics. Nanomaterials. 2020;10:102. doi: 10.3390/nano10010102. PubMed DOI PMC

Zheng B., Wang W., Jiang G., Mei X. Fabrication of Broadband Antireflective Black Metal Surfaces with Ultra-Light-Trapping Structures by Picosecond Laser Texturing and Chemical Fluorination. Appl. Phys. B. 2016;122:180. doi: 10.1007/s00340-016-6449-1. DOI

Vorobyev A.Y., Guo C. Colorizing Metals with Femtosecond Laser Pulses. Appl. Phys. Lett. 2008;4:041914. doi: 10.1063/1.2834902. DOI

Ou Z., Huang M., Zhao F. Colorizing Pure Copper Surface by Ultrafast Laser-Induced near-Subwavelength Ripples. Opt. Express. 2014;22:17254. doi: 10.1364/OE.22.017254. PubMed DOI

Vorobyev A.Y., Guo C. Multifunctional Surfaces Produced by Femtosecond Laser Pulses. J. Appl. Phys. 2015;117:033103. doi: 10.1063/1.4905616. DOI

Melikhova O., Čížek J., Hruška P., Lukáč F., Novotný M., More-Chevalier J., Fitl P., Liedke M.O., Butterling M., Wagner A. Microstructure and Nanoscopic Porosity in Black Pd Films. Acta Phys. Pol. A. 2020;137:222–226. doi: 10.12693/APhysPolA.137.222. DOI

Melikhova O., Čížek J., Hruška P., Liedke M.O., Butterling M., Wagner A., Novotný M., More-Chevalier J. Study of Nanoscopic Porosity in Black Metals by Positron Annihilation Spectroscopy. Acta Phys. Pol. B. 2020;51:383. doi: 10.5506/APhysPolB.51.383. DOI

Romanova M., More-Chevalier J., Novotny M., Pokorny P., Volfova L., Fitl P., Poplausks R., Dekhtyar Y. Thermal Stability of Black Aluminum Films and Growth of Aluminum Nanowires from Mechanical Defects on the Film Surface during Annealing. Phys. Status Solidi B. 2021;259:2100467. doi: 10.1002/pssb.202100467. DOI

Pokorný P., Novotný M., More-Chevalier J., Dekhtyar Y., Romanova M., Davídková M., Chertopalov S., Fitl P., Hruška M., Kawamura M., et al. Surface Processes on Thin Layers of Black Aluminum in Ultra-High Vacuum. Vacuum. 2022;205:111377. doi: 10.1016/j.vacuum.2022.111377. DOI

Vitrey A., Alvarez R., Palmero A., González M.U., García-Martín J.M. Fabrication of Black-Gold Coatings by Glancing Angle Deposition with Sputtering. Beilstein J. Nanotechnol. 2017;8:434–439. doi: 10.3762/bjnano.8.46. PubMed DOI PMC

Becker W., Fettig R., Gaymann A., Ruppel W. Black Gold Deposits as Absorbers for Far Infrared Radiation. Phys. Stat. Sol. B. 1996;194:241–255. doi: 10.1002/pssb.2221940123. DOI

Casteleiro-Roca J.L., Calvo-Rolle J.L., Meizoso-Lopez M.C., Piñón-Pazos A., Rodríguez-Gómez B.A. New Approach for the QCM Sensors Characterization. Sens. Actuators A Phys. 2014;207:1–9. doi: 10.1016/j.sna.2013.12.002. DOI

Burda I. Quartz Crystal Microbalance with Impedance Analysis Based on Virtual Instruments: Experimental Study. Sensors. 2022;22:1506. doi: 10.3390/s22041506. PubMed DOI PMC

Johannsmann D. The Quartz Crystal Microbalance in Soft Matter Research. Springer International Publishing; Cham, Switzerland: 2015. Soft and Biological Matter.

Okahata Y., Ariga K. Swelling Behaviour and Stability of Langmuir-Blodgett Films Deposited on a Quartz Crystal Microbalance in a Water Phase. Thin Solid Film. 1989;178:465–471. doi: 10.1016/0040-6090(89)90339-8. DOI

Currie L.A. Nomenclature in Evaluation of Analytical Methods Including Detection and Quantification Capabilities. Pure Appl. Chem. 1995;67:1699–1723. doi: 10.1351/pac199567101699. DOI

van Noort D., Rani R., Mandenius C.-F. Improving the Sensitivity of a Quartz Crystal Microbalance for Biosensing by Using Porous Gold. Microchim. Acta. 2001;136:49–53. doi: 10.1007/s006040170066. DOI

Hieda M., Garcia R., Dixon M., Daniel T., Allara D., Chan M.H.W. Ultrasensitive Quartz Crystal Microbalance with Porous Gold Electrodes. Appl. Phys. Lett. 2004;84:628–630. doi: 10.1063/1.1643531. DOI

Chernavskii P.A., Peskov N.V., Mugtasimov A.V., Lunin V.V. Oxidation of metal nanoparticles: Experiment and model. Russ. J. Phys. Chem. B. 2007;14:394–411. doi: 10.1134/S1990793107040082. DOI

Evans-Nguyen K.M., Tao S.C., Zhu H., Cotter R.J. Protein arrays on patterned porous gold substrates interrogated with mass spectrometry: Detection of peptides in plasma. Anal. Chem. 2008;80:1448–1458. doi: 10.1021/ac701800h. PubMed DOI

Hondred J.A., Johnson Z.T., Claussen J.C. Nanoporous gold peel-and-stick biosensors created with etching inkjet maskless lithography for electrochemical pesticide monitoring with microfluidics. J. Mater. Chem. C. 2020;8:11376–11388. doi: 10.1039/D0TC01423K. DOI

Hruska M., Tomecek D., Havlova S., Fitl P., Guerkboukha M.A., Gadenne V., Patrone L., Vrnata M. QCM Sensors Combining Highly Nanostructured Metal-Blacks Sublayers and Active Self-Assembled Monolayers. ECS Meet. Abstr. 2020;31:2314. doi: 10.1149/MA2020-01312314mtgabs. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Spectral Emissivity and Thermal Conductivity Properties of Black Aluminum Films

. 2025 Feb 18 ; 41 (6) : 3832-3842. [epub] 20250101

Microstructure and physical properties of black-aluminum antireflective films

. 2024 May 10 ; 14 (22) : 15220-15231. [epub] 20240510

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...