Surface Enhancement Using Black Coatings for Sensor Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
JP22420
International Visegrad Fund
SOLID21 CZ.02.1.01/0.0/0.0/16_019/0000760
Ministry of Education, Youth and Sports of the Czech Republic
8F21008
Ministry of Education, Youth and Sports of the Czech Republic
8J22FR023
Ministry of Education, Youth and Sports of the Czech Republic
22-14886S
Czech Science Foundation
21-09685S
Czech Science Foundation
PubMed
36500920
PubMed Central
PMC9738287
DOI
10.3390/nano12234297
PII: nano12234297
Knihovny.cz E-zdroje
- Klíčová slova
- QCM sensors, black aluminium, black gold, evaporation depositions, nanostructured materials, sensor applications, sputtering depositions,
- Publikační typ
- časopisecké články MeSH
The resolution of a quartz crystal microbalance (QCM) is particularly crucial for gas sensor applications where low concentrations are detected. This resolution can be improved by increasing the effective surface of QCM electrodes and, thereby, enhancing their sensitivity. For this purpose, various researchers have investigated the use of micro-structured materials with promising results. Herein, we propose the use of easy-to-manufacture metal blacks that are highly structured even on a nanoscale level and thus provide more bonding sites for gas analytes. Two different black metals with thicknesses of 280 nm, black aluminum (B-Al) and black gold (B-Au), were deposited onto the sensor surface to improve the sensitivity following the Sauerbrey equation. Both layers present a high surface roughness due to their cauliflower morphology structure. A high response (i.e., resonant frequency shift) of these QCM sensors coated with a black metal layer was obtained. Two gaseous analytes, H2O vapor and EtOH vapor, at different concentrations, are tested, and a distinct improvement of sensitivity is observed for the QCM sensors coated with a black metal layer compared to the blank ones, without strong side effects on resonance frequency stability or mechanical quality factor. An approximately 10 times higher sensitivity to EtOH gas is reported for the QCM coated with a black gold layer compared to the blank QCM sensor.
Faculty of Mathematics and Physics Charles University 5 Holesovickach 2 180 00 Prague Czech Republic
Institute of Physics Czech Academy of Sciences Na Slovance 2 182 21 Prague Czech Republic
ISEN Yncréa Méditerranée Aix Marseille Univ Université de Toulon CNRS IM2NP 83000 Toulon France
Zobrazit více v PubMed
Sauerbrey G. Verwendung von Schwingquarzen Zur Wagung Dunner Schichten Und Zur Mikrowagung. Z. Fiir Phys. 1959;155:206–222. doi: 10.1007/BF01337937. DOI
Cooper M.A., Singleton V.T. A Survey of the 2001 to 2005 Quartz Crystal Microbalance Biosensor Literature: Applications of Acoustic Physics to the Analysis of Biomolecular Interactions. J. Mol. Recognit. 2007;20:154–184. doi: 10.1002/jmr.826. PubMed DOI
Becker B., Cooper M.A. A Survey of the 2006-2009 Quartz Crystal Microbalance Biosensor Literature. J. Mol. Recognit. 2011;24:754–787. doi: 10.1002/jmr.1117. PubMed DOI
Speight R.E., Cooper M.A. A Survey of the 2010 Quartz Crystal Microbalance Literature: A Survey of the 2010 Quartz Crystal Microbalance Literature. J. Mol. Recognit. 2012;25:451–473. doi: 10.1002/jmr.2209. PubMed DOI
Röck F., Barsan N., Weimar U. Electronic Nose: Current Status and Future Trends. Chem. Rev. 2008;108:705–725. doi: 10.1021/cr068121q. PubMed DOI
Rodríguez-Torres M., Altuzar V., Mendoza-Barrera C., Beltrán-Pérez G., Castillo-Mixcóatl J., Muñoz-Aguirre S. Discrimination Improvement of a Gas Sensors’ Array Using High-Frequency Quartz Crystal Microbalance Coated with Polymeric Films. Sensors. 2020;20:6972. doi: 10.3390/s20236972. PubMed DOI PMC
Fernández R., Calero M., Jiménez Y., Arnau A. A Real-Time Method for Improving Stability of Monolithic Quartz Crystal Microbalance Operating under Harsh Environmental Conditions. Sensors. 2021;21:4166. doi: 10.3390/s21124166. PubMed DOI PMC
Feng S., Farha F., Li Q., Wan Y., Xu Y., Zhang T., Ning H. Review on Smart Gas Sensing Technology. Sensors. 2019;19:3760. doi: 10.3390/s19173760. PubMed DOI PMC
Barbosa A.J.M., Oliveira A.R., Roque A.C.A. Protein-and Peptide-Based Biosensors in Artificial Olfaction. Trends Biotechnol. 2018;36:1244–1258. doi: 10.1016/j.tibtech.2018.07.004. PubMed DOI PMC
Khadka R., Aydemir N., Carraher C., Hamiaux C., Colbert D., Cheema J., Malmström J., Kralicek A., Travas-Sejdic J. An Ultrasensitive Electrochemical Impedance-Based Biosensor Using Insect Odorant Receptors to Detect Odorants. Biosens. Bioelectron. 2019;126:207–213. doi: 10.1016/j.bios.2018.10.043. PubMed DOI
More-Chevalier J., Novotný M., Hruška P., Fekete L., Fitl P., Bulíř J., Pokorný P., Volfová L., Havlová Š., Vondráček M., et al. Fabrication of Black Aluminium Thin Films by Magnetron Sputtering. RSC Adv. 2020;10:20765–20771. doi: 10.1039/D0RA00866D. PubMed DOI PMC
Hruška P. Effect of Roughness and Nanoporosity on Optical Properties of Black and Reflective Al Films Prepared by Magnetron Sputtering. J. Alloy. Compd. 2021;9:159744. doi: 10.1016/j.jallcom.2021.159744. DOI
Novotný M., Fitl P., Sytchkova A., Bulíř J., Lančok J., Pokorný P., Najdek D., Bočan J. Pulsed Laser Treatment of Gold and Black Gold Thin Films Fabricated by Thermal Evaporation. Open Phys. 2009;7:327. doi: 10.2478/s11534-009-0027-7. DOI
Zhang X.-Y., Shan F., Zhou H.-L., Su D., Xue X.-M., Wu J.-Y., Chen Y.-Z., Zhao N., Zhang T. Silver Nanoplate Aggregation Based Multifunctional Black Metal Absorbers for Localization, Photothermic Harnessing Enhancement and Omnidirectional Light Antireflection. J. Mater. Chem. C. 2018;6:989–999. doi: 10.1039/C7TC04486K. DOI
Christiansen A.B., Caringal G.P., Clausen J.S., Grajower M., Taha H., Levy U., Asger Mortensen N., Kristensen A. Black Metal Thin Films by Deposition on Dielectric Antireflective Moth-Eye Nanostructures. Sci. Rep. 2015;5:10563. doi: 10.1038/srep10563. PubMed DOI PMC
Strimer P., Gerbaux X., Hadni A., Souel T. Black Coatings for Infrared and Visible, with High Electrical Resistivity. Infrared Phys. 1981;21:37–39. doi: 10.1016/0020-0891(81)90007-5. DOI
Lysenko V.S., Mal’nev A.F. Optical Characteristics of Metal Blacks. J. Appl. Spectrosc. 1969;10:566–570. doi: 10.1007/BF00607815. DOI
Qiu J., Wei W.D. Surface Plasmon-Mediated Photothermal Chemistry. J. Phys. Chem. C. 2014;118:20735–20749. doi: 10.1021/jp5042553. DOI
Wang C.-M., Chen Y.-C., Lee M.-S., Chen K.-J. Microstructure and Absorption Property of Silver-Black Coatings. Jpn. J. Appl. Phys. 2000;39:551–554. doi: 10.1143/JJAP.39.551. DOI
Gu S., Lu Y., Ding Y., Li L., Song H., Wang J., Wu Q. A Droplet-Based Microfluidic Electrochemical Sensor Using Platinum-Black Microelectrode and Its Application in High Sensitive Glucose Sensing. Biosens. Bioelectron. 2014;55:106–112. doi: 10.1016/j.bios.2013.12.002. PubMed DOI
Liu X., Coxon P.R., Peters M., Hoex B., Cole J.M., Fray D.J. Black Silicon: Fabrication Methods, Properties and Solar Energy Applications. Energy Environ. Sci. 2014;7:3223–3263. doi: 10.1039/C4EE01152J. DOI
Vorobyev A.Y., Guo C. Metallic Light Absorbers Produced by Femtosecond Laser Pulses. Adv. Mech. Eng. 2010;2:452749. doi: 10.1155/2010/452749. DOI
Moreau A., Ciracì C., Mock J.J., Hill R.T., Wang Q., Wiley B.J., Chilkoti A., Smith D.R. Controlled-Reflectance Surfaces with Film-Coupled Colloidal Nanoantennas. Nature. 2012;492:86–89. doi: 10.1038/nature11615. PubMed DOI PMC
Bae K., Kang G., Cho S.K., Park W., Kim K., Padilla W.J. Flexible Thin-Film Black Gold Membranes with Ultrabroadband Plasmonic Nanofocusing for Efficient Solar Vapour Generation. Nat. Commun. 2015;6:10103. doi: 10.1038/ncomms10103. PubMed DOI PMC
More-Chevalier J., Yudin P.V., Cibert C., Bednyakov P., Fitl P., Valenta J., Novotný M., Savinov M., Poupon M., Zikmund T., et al. Black Aluminum-Coated Pt/Pb(Zr0.56 Ti0.44)O3/Pt Thin Film Structures for Pyroelectric Energy Harvesting from a Light Source. J. Appl. Phys. 2019;126:214501. doi: 10.1063/1.5130538. DOI
Yang W., Zheng X.-G., Wang S.-G., Jin H.-J. Nanoporous Aluminum by Galvanic Replacement: Dealloying and Inward-Growth Plating. J. Electrochem. Soc. 2018;165:C492–C496. doi: 10.1149/2.0881809jes. DOI
Garoli D., Schirato A., Giovannini G., Cattarin S., Ponzellini P., Calandrini E., Proietti Zaccaria R., D’Amico F., Pachetti M., Yang W., et al. Galvanic Replacement Reaction as a Route to Prepare Nanoporous Aluminum for UV Plasmonics. Nanomaterials. 2020;10:102. doi: 10.3390/nano10010102. PubMed DOI PMC
Zheng B., Wang W., Jiang G., Mei X. Fabrication of Broadband Antireflective Black Metal Surfaces with Ultra-Light-Trapping Structures by Picosecond Laser Texturing and Chemical Fluorination. Appl. Phys. B. 2016;122:180. doi: 10.1007/s00340-016-6449-1. DOI
Vorobyev A.Y., Guo C. Colorizing Metals with Femtosecond Laser Pulses. Appl. Phys. Lett. 2008;4:041914. doi: 10.1063/1.2834902. DOI
Ou Z., Huang M., Zhao F. Colorizing Pure Copper Surface by Ultrafast Laser-Induced near-Subwavelength Ripples. Opt. Express. 2014;22:17254. doi: 10.1364/OE.22.017254. PubMed DOI
Vorobyev A.Y., Guo C. Multifunctional Surfaces Produced by Femtosecond Laser Pulses. J. Appl. Phys. 2015;117:033103. doi: 10.1063/1.4905616. DOI
Melikhova O., Čížek J., Hruška P., Lukáč F., Novotný M., More-Chevalier J., Fitl P., Liedke M.O., Butterling M., Wagner A. Microstructure and Nanoscopic Porosity in Black Pd Films. Acta Phys. Pol. A. 2020;137:222–226. doi: 10.12693/APhysPolA.137.222. DOI
Melikhova O., Čížek J., Hruška P., Liedke M.O., Butterling M., Wagner A., Novotný M., More-Chevalier J. Study of Nanoscopic Porosity in Black Metals by Positron Annihilation Spectroscopy. Acta Phys. Pol. B. 2020;51:383. doi: 10.5506/APhysPolB.51.383. DOI
Romanova M., More-Chevalier J., Novotny M., Pokorny P., Volfova L., Fitl P., Poplausks R., Dekhtyar Y. Thermal Stability of Black Aluminum Films and Growth of Aluminum Nanowires from Mechanical Defects on the Film Surface during Annealing. Phys. Status Solidi B. 2021;259:2100467. doi: 10.1002/pssb.202100467. DOI
Pokorný P., Novotný M., More-Chevalier J., Dekhtyar Y., Romanova M., Davídková M., Chertopalov S., Fitl P., Hruška M., Kawamura M., et al. Surface Processes on Thin Layers of Black Aluminum in Ultra-High Vacuum. Vacuum. 2022;205:111377. doi: 10.1016/j.vacuum.2022.111377. DOI
Vitrey A., Alvarez R., Palmero A., González M.U., García-Martín J.M. Fabrication of Black-Gold Coatings by Glancing Angle Deposition with Sputtering. Beilstein J. Nanotechnol. 2017;8:434–439. doi: 10.3762/bjnano.8.46. PubMed DOI PMC
Becker W., Fettig R., Gaymann A., Ruppel W. Black Gold Deposits as Absorbers for Far Infrared Radiation. Phys. Stat. Sol. B. 1996;194:241–255. doi: 10.1002/pssb.2221940123. DOI
Casteleiro-Roca J.L., Calvo-Rolle J.L., Meizoso-Lopez M.C., Piñón-Pazos A., Rodríguez-Gómez B.A. New Approach for the QCM Sensors Characterization. Sens. Actuators A Phys. 2014;207:1–9. doi: 10.1016/j.sna.2013.12.002. DOI
Burda I. Quartz Crystal Microbalance with Impedance Analysis Based on Virtual Instruments: Experimental Study. Sensors. 2022;22:1506. doi: 10.3390/s22041506. PubMed DOI PMC
Johannsmann D. The Quartz Crystal Microbalance in Soft Matter Research. Springer International Publishing; Cham, Switzerland: 2015. Soft and Biological Matter.
Okahata Y., Ariga K. Swelling Behaviour and Stability of Langmuir-Blodgett Films Deposited on a Quartz Crystal Microbalance in a Water Phase. Thin Solid Film. 1989;178:465–471. doi: 10.1016/0040-6090(89)90339-8. DOI
Currie L.A. Nomenclature in Evaluation of Analytical Methods Including Detection and Quantification Capabilities. Pure Appl. Chem. 1995;67:1699–1723. doi: 10.1351/pac199567101699. DOI
van Noort D., Rani R., Mandenius C.-F. Improving the Sensitivity of a Quartz Crystal Microbalance for Biosensing by Using Porous Gold. Microchim. Acta. 2001;136:49–53. doi: 10.1007/s006040170066. DOI
Hieda M., Garcia R., Dixon M., Daniel T., Allara D., Chan M.H.W. Ultrasensitive Quartz Crystal Microbalance with Porous Gold Electrodes. Appl. Phys. Lett. 2004;84:628–630. doi: 10.1063/1.1643531. DOI
Chernavskii P.A., Peskov N.V., Mugtasimov A.V., Lunin V.V. Oxidation of metal nanoparticles: Experiment and model. Russ. J. Phys. Chem. B. 2007;14:394–411. doi: 10.1134/S1990793107040082. DOI
Evans-Nguyen K.M., Tao S.C., Zhu H., Cotter R.J. Protein arrays on patterned porous gold substrates interrogated with mass spectrometry: Detection of peptides in plasma. Anal. Chem. 2008;80:1448–1458. doi: 10.1021/ac701800h. PubMed DOI
Hondred J.A., Johnson Z.T., Claussen J.C. Nanoporous gold peel-and-stick biosensors created with etching inkjet maskless lithography for electrochemical pesticide monitoring with microfluidics. J. Mater. Chem. C. 2020;8:11376–11388. doi: 10.1039/D0TC01423K. DOI
Hruska M., Tomecek D., Havlova S., Fitl P., Guerkboukha M.A., Gadenne V., Patrone L., Vrnata M. QCM Sensors Combining Highly Nanostructured Metal-Blacks Sublayers and Active Self-Assembled Monolayers. ECS Meet. Abstr. 2020;31:2314. doi: 10.1149/MA2020-01312314mtgabs. DOI