Nutritional Potential of Selected Insect Species Reared on the Island of Sumatra

. 2017 May 12 ; 14 (5) : . [epub] 20170512

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28498340

Inhabitants of the Indonesian island of Sumatra are faced with the problem of insufficient food supplies and the consequent risk of undernourishment and health issues. Edible insects as a traditional and readily available food source could be part of the solution. The nutritional value of insects depends on many factors, e.g., species, developmental stage, sex, diet, and climatic conditions. However, edible insects bred in Sumatra for human consumption have never before been assessed with regard to their nutritional value. Our study involved analyses of crude protein, chitin, fat and selected fatty acid contents of giant mealworm larvae (Zophobas morio), larvae of the common mealworm (Tenebrio molitor) and nymphs of the field cricket (Gryllus assimilis). Crude protein content in the samples ranged from 46% to 56%. Highest (35%) and lowest (31%) amounts of fat were recorded in giant mealworm larvae and larvae of the common mealworm, respectively. Chitin amounts ranged from 6% to 13%. Based on these values, which are comparable to those known from other food insects reared in different regions of the world, the edible species bred in Sumatra could become food sources with a potential to help stave off hunger and undernourishment.

Zobrazit více v PubMed

FAO . Regional Overview of Food Insecurity Asia and the Pacific, Towards a Food Secure Asia and the Pacific. FAO, Regional Office for Asia and the Pacific; Bangkok, Thailand: 2015.

UNICEF/WHO/WBG . Child Malnutrition Estimates. UNICEF/WHO/WBG; 2015. [(accessed on 8 April 2017)]. Available online: http://www.who.int/entity/nutgrowthdb/jme_master_2015.xlsx?ua=1.

Lipoeto N.I., Wattanapenpaiboon N., Malik A., Wahlqvist M.L. The nutrition transition in West Sumatra, Indonesia. Asia Pac. J. Clin. Nutr. 2004;13:312–316. PubMed

Defoliart G.R. Insects as human food: Gene DeFoliart discusses some nutritional and economic aspects. Crop Prot. 1992;11:395–399. doi: 10.1016/0261-2194(92)90020-6. DOI

Ramos-Elorduy J., Moreno J.M.P., Vázquez A.I., Landero I., Oliva-Rivera H., Camacho V.H.M. Edible Lepidoptera in Mexico: Geographic distribution, ethnicity, economic and nutritional importance for rural people. J. Ethnobiol. Ethnomed. 2011;7:1–22. doi: 10.1186/1746-4269-7-2. PubMed DOI PMC

EFSA Scientific Committee Risk profile related to production and consumption of insects as food and feed. EFSA J. 2015;13:1–60.

Meyer-Rochow V.B. Can insects help to ease the problem of world food shortage? Search. 1975;6:261–262.

Ramos-Elorduy J., Gonzalez E.A., Hernandez A.R., Pino J.M. Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. J. Econ. Entomol. 2002;95:214–220. doi: 10.1603/0022-0493-95.1.214. PubMed DOI

Veldkamp T., van Duinkerken G., van Huis A., Iakemond C.M.M., Ottevanger E., Bosh G., van Boekel M.A.J.S. Insects as a Sustainable Feed Ingredient in Pig and Poultry Diets—A Feasibility Study. 1st ed. Wageningen UR Livestock Research; Wageningen, The Netherlands: 2012.

Chakravorty J., Ghosh S., Meyer-Rochow V.B. Chemical composition of Aspongopus nepalensis Westwood 1837 (Hemiptera; Pentatomidae), a common food insect of tribal people in Arunachal Pradesh (India) Int. J. Vitam. Nutr. Res. 2011;81:49–56. doi: 10.1024/0300-9831/a000050. PubMed DOI

Chakravorty J., Ghosh S., Jung C., Meyer-Rochow V.B. Nutritional composition of Chondacris rosea and Brachytrupes orientalis: Two common insects used as food by tribes of Arunachal Pradesh, India. J. Asia Pac. Entomol. 2014;17:407–415. doi: 10.1016/j.aspen.2014.03.007. DOI

Chakravorty J., Ghosh S., Megu K., Jung C., Meyer-Rochow V.B. Nutritional and anti-nutritional composition of Oecophylla smaragdina (Hymenoptera: Formicidae) and Odontotermes sp. (Isoptera: Termitidae): Two preferred edible insects of Arunachal Pradesh, India. J. Asia Pac. Entomol. 2016;19:711–720. doi: 10.1016/j.aspen.2016.07.001. DOI

Fontaneto D., Tommaseo-Ponzetta M., Galli C., Risé P., Glew R.H., Paoletti M.G. Differences in fatty acid composition between aquatic and terrestrial insects used as food in human nutrition. Ecol. Food Nutr. 2011;50:351–367. doi: 10.1080/03670244.2011.586316. PubMed DOI

ISO 1871:2009 . Food and Feed Products—General Guidelines for the Determination of Nitrogen by the Kjeldahl Method. 2nd ed. ISO; Geneva, Switzerland: 2009.

Soxhlet F. Die gewichtsanalytische Bestimmung des Milchfettes (The weight analysis of milk fat) Dingler’s Polytech. J. 1879;232:461–465.

Liu S., Sun J., Yu L., Zhang C., Bi J., Zhu F., Qu M., Jiang C., Yang Q. Extraction and characterization of chitin from the beetle Holotrichia parallela motschulsky. Molecules. 2012;17:4604–4611. doi: 10.3390/molecules17044604. PubMed DOI PMC

ISO 12966-2:2011 . Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters. 1st ed. ISO; Geneva, Switzerland: 2011.

Bednářová M. Doctoral’s Thesis. Mendel University; Brno, Czech Republic: 2013. Possibilities of Using Insects as Food in the Czech Republic.

Finke M.D. Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol. 2002;21:269–285. doi: 10.1002/zoo.10031. DOI

Barroso F.G., de Haro C., Sánchez-Muros M.-J., Venegas E., Martínez-Sánchez A., Pérez-Bañón C. The potential of various insect species for use as food for fish. Aquaculture. 2014;422:193–201. doi: 10.1016/j.aquaculture.2013.12.024. DOI

Tzompa-Sosa D.A., Yi L., van Valenberg H.J.F., van Boekel M.A.J.S., Lakemond C.M.M. Insect lipid profile: Aqaueous versus organic solvent-based extraction methods. Food Res. Int. 2014;62:1087–1094. doi: 10.1016/j.foodres.2014.05.052. DOI

Zielińska E., Baraniak B., Karaś M., Rybczyńska K., Jakubczyk A. Selected species of edible insects as a source of nutrient composition. Food Res. Int. 2015;77:460–466. doi: 10.1016/j.foodres.2015.09.008. DOI

Sánchez-Muros M.J., de Haro C., Sanz A., Trenzado C.E., Villareces S., Barroso F.G. Nutritional evaluation of Tenebrio molitor meal as fishmeal substitute for tilapia (Oreochromis niloticus) diet. Aquac Nutr. 2016;22:943–955. doi: 10.1111/anu.12313. DOI

Yi L., Lakemond C.M.M., Sagis L.M.C., Eisner-Schadler V., Huis A.V., Boekel M.A.J.S.V. Extraction and characterisation of protein fractions from five insect species. Food Chem. 2013;141:3341–3348. doi: 10.1016/j.foodchem.2013.05.115. PubMed DOI

Mariod A.A., Abdel-Wahab S.I., Ain N.M. Proximate amino acid, fatty acid and mineral composition of two Sudanese edible pentatomid insects. Int. J. Trop. Insect Sci. 2011;31:145–153. doi: 10.1017/S1742758411000282. DOI

Verkerk M.C., Tramper J., van Trijp J.C.M., Martens D.E. Insect cells for human food. Biotechnol. Adv. 2007;25:198–202. doi: 10.1016/j.biotechadv.2006.11.004. PubMed DOI

Ramos-Elorduy J., Moreno J.M.P., Prado E.E., Perez M.A., Otero J.L., De Guevara O.L. Nutritional value of edible insects from the state of Oaxaca, Mexico. J. Food Compost. Anal. 1997;10:142–157. doi: 10.1006/jfca.1997.0530. DOI

Finke M.D. Nutrient content of insects. In: Capinera J.L., editor. Encyclopedia of Entomology. Kluwer Academic Publishers; Dordrecht, The Netherlands: 2004. pp. 1563–1575.

Van Broekhoven S., Oonincx D.G.A.B., van Huis A., van Loon J.J.A. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J. Insect Physiol. 2015;73:1–10. doi: 10.1016/j.jinsphys.2014.12.005. PubMed DOI

Belluco S., Losasso C., Maggioletti M., Alonzi C.C., Paoletti M.G., Ricci A. Edible insects in a food safety and nutritional perspective: A critical review. Compr. Rev. Food Sci. Food Saf. 2013;12:296–313. doi: 10.1111/1541-4337.12014. DOI

Paul A., Frederich M., Caparros Megido R., Alabi T., Malik P., Uyttenbroeck R., Francis F., Blecker C., Haubruge E., Lognay G., et al. Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. J. Asia Pac. Entomol. 2017;20:337–340. doi: 10.1016/j.aspen.2017.02.001. DOI

Ghosh S., Lee S.M., Jung Ch., Meyer-Rochow V.B. Nutritional composition of five commercial edible insects in South Korea. J. Asia Pac. Entomol. 2017;20:686–694. doi: 10.1016/j.aspen.2017.04.003. DOI

Pipek P. Technologie Masa I. (Meat Technology I) 3rd ed. VŠCHT; Praha, Czech Republic: 1995.

Steinhauser L. Hygiena a Technologie Masa (Hygiene and Technology of Meat) 1st ed. LAST; Brno, Czech Republic: 1995.

Raksakantong P., Meeso N., Kubola J., Siriamornpun S. Fatty acids and proximate composition of eight Thai edible terricolous insects. Food. Res. Int. 2010;43:350–355. doi: 10.1016/j.foodres.2009.10.014. DOI

Kinyuru J.N., Konyole S.O., Roos N., Onyango C.A., Owino V.O., Owuor B.O., Estambale B.B., Friis H., Aagaard-Hansen J., Kenji G.M. Nutrient composition of four species of winged termites consumed in western Kenya. J. Food Compost. Anal. 2013;30:120–124. doi: 10.1016/j.jfca.2013.02.008. DOI

Kinyuru J.N., Mogendi J.B., Riwa C.H.A., Ndung’u N.W. Edible insects—A novel source of essential nutrients for human diet: Learning from traditional knowledge. Anim. Front. 2015;5:14–19.

Van Huis A., van Itterbeeck J., Klunder H., Mertens E., Halloran A., Muir G., Vantomme P. Edible insects: Future Prospects for Food and Feed Security. 1st ed. Food and agriculture organization of the United Nations; Rome, Italy: 2013.

Paul A., Frederich M., Uyttenbroeck R., Malik P., Filocco S., Richel A., Heuskin S., Alabi T., Caparros Megido R., Franck T., et al. Nutritional composition and rearing potential of the meadow grasshopper (Chorthippus parallelus Zetterstedt) J. Asia Pac. Entomol. 2016;19:1111–1116. doi: 10.1016/j.aspen.2016.09.012. DOI

Paul A., Frederich M., Uyttenbroeck R., Hatt S., Malik P., Lebecque S., Hamaidia M., Miazek K., Goffin D., Willems L., et al. Grasshoppers as a food source? A review [Les criquets: Une nouvelle source d’aliments? (synthèse bibliographique)] Biotechnol. Agron. Soc. 2016;20:337–352.

Adámková A., Kourimská L., Borkovcová M., Kulma M., Mlček J. Nutritional values of edible Coleoptera (Tenebrio molitor, Zophobas morio and Alphitobius diaperinus) reared in the Czech Republic. Potravinarstvo. 2016;10:663–671. doi: 10.5219/609. DOI

Finke M.D. Complete nutrient content of four species of commercially available feeder insects fed enhanced diets during growth. Zoo Biol. 2015;34:554–564. doi: 10.1002/zoo.21246. PubMed DOI

Wang D., Bai Y., Li J., Zhang C. Nutritional value of the field cricket (Gryllus testaceus Walker) Entomol. Sin. 2004;11:275–283. doi: 10.1111/j.1744-7917.2004.tb00424.x. DOI

Paoletti M.G., Norberto L., Damini R., Musumeci S. Human gastric juice contains chitinase that can degrade chitin. Ann. Nutr. Metab. 2007;51:244–251. doi: 10.1159/000104144. PubMed DOI

Velíšek J. Chemie Potravin (The Chemistry of Food) 2nd ed. OSSIS; Tábor, Czech Republic: 2002.

Finke M.D. Estimate of chitin in raw whole insects. Zoo Biol. 2007;26:105–115. doi: 10.1002/zoo.20123. PubMed DOI

Marono S., Piccolo G., Loponte R., Meo C.D., Attia Y.A., Nizza A., Bovera F. In vitro crude protein digestibility of Tenebrio molitor and Hermetia illucens insect meals and its correlation with chemical composition traits. Ital. J. Anim. Sci. 2015;14:338–343. doi: 10.4081/ijas.2015.3889. DOI

Finke M.D. Complete Nutrient Content of Four Species of Feeder Insects. Zoo Biol. 2013;32:27–36. doi: 10.1002/zoo.21012. PubMed DOI

Goodman W.G. Chitin: A Magic Bullet? Food Insects Newslett. 1989;2:6–7.

Akinnawo O., Ketiku A.O. Chemical composition and fatty acid profile of edible larva of Cirina forda (Westwood) Afr. J. Biomed. Res. 2000;3:93–96.

Longvah T., Mangthya K., Ramulu P. Nutrient composition and protein quality evaluation of eri silkworm (Samia ricinii) prepupae and pupae. Food Chem. 2011;128:400–403. doi: 10.1016/j.foodchem.2011.03.041. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...