Lost in Translation: Defects in Transfer RNA Modifications and Neurological Disorders
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
28536502
PubMed Central
PMC5422465
DOI
10.3389/fnmol.2017.00135
Knihovny.cz E-zdroje
- Klíčová slova
- Q-tRNA, modified nucleosides, neurological disease, queuosine, transfer RNA modifications,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Transfer RNAs (tRNAs) are key molecules participating in protein synthesis. To augment their functionality they undergo extensive post-transcriptional modifications and, as such, are subject to regulation at multiple levels including transcription, transcript processing, localization and ribonucleoside base modification. Post-transcriptional enzyme-catalyzed modification of tRNA occurs at a number of base and sugar positions and influences specific anticodon-codon interactions and regulates translation, its efficiency and fidelity. This phenomenon of nucleoside modification is most remarkable and results in a rich structural diversity of tRNA of which over 100 modified nucleosides have been characterized. Most often these hypermodified nucleosides are found in the wobble position of tRNAs, where they play a direct role in codon recognition as well as in maintaining translational efficiency and fidelity, etc. Several recent studies have pointed to a link between defects in tRNA modifications and human diseases including neurological disorders. Therefore, defects in tRNA modifications in humans need intensive characterization at the enzymatic and mechanistic level in order to pave the way to understand how lack of such modifications are associated with neurological disorders with the ultimate goal of gaining insights into therapeutic interventions.
Department of Natural Sciences Stillman CollegeTuscaloosa AL USA
Molecular Biosciences Program Arkansas State UniversityJonesboro AR USA
Zobrazit více v PubMed
Abbasi-Moheb L., Mertel S., Gonsior M., Nouri-Vahid L., Kahrizi K., Cirak S., et al. . (2012). Mutations in NSUN2 cause autosomal-recessive intellectual disability. Am. J. Hum. Genet. 90, 847–855. 10.1016/j.ajhg.2012.03.021 PubMed DOI PMC
Agris P. F. (1991). Wobble position modified nucleosides evolved to select transfer RNA codon recognition: a modified-wobble hypothesis. Biochimie 73, 1345–1349. 10.1016/0300-9084(91)90163-u PubMed DOI
Alazami A. M., Hijazi H., Al-Dosari M. S., Shaheen R., Hashem A., Aldahmesh M. A., et al. . (2013). Mutation in ADAT3, encoding adenosine deaminase acting on transfer RNA, causes intellectual disability and strabismus. J. Med. Genet. 50, 425–430. 10.1136/jmedgenet-2012-101378 PubMed DOI
Alexandrov A., Chernyakov I., Gu W., Hiley S. L., Hughes H. R., Grayhack E. J., et al. . (2006). Rapid tRNA decay can result from lack of nonessential modifications. Mol. Cell 21, 87–96. 10.1016/j.molcel.2005.10.036 PubMed DOI
Anderson J., Phan L., Cuesta R., Carlson B. A., Pak M., Asano K., et al. . (1998). The essential Gcd10p-Gcd14p nuclear complex is required for 1-methyladenosine modification and maturation of initiator methionyl-tRNA. Genes Dev. 12, 3650–3662. 10.1101/gad.12.23.3650 PubMed DOI PMC
Baranowski W., Dirheimer G., Jankowiski J. A., Keith G. (1994). Significant deficiency of queuine, a highly modified base purine base, in transfer ribonucleic acids from primary and metastatic ovarian malignant tumor in women. Cancer Res. 54, 4468–4471. PubMed
Bauer F., Hermand D. (2012). A corordinated codon-dependent regulation of translation by Elongator. Cell Cycle 11, 4524–4529. 10.4161/cc.22689 PubMed DOI PMC
Björk G. (1986). Transfer RNA modification in different organisms. Chem. Scr. 26B, 91–95.
Björk G. R. (1995). “Biosynthesis and function of modified nucleosides,” in tRNA: Structure, Biosynthesis and Function, eds Söll D., RajBhandary U. L. (Washington, DC: ASM Press; ), 165–205.
Björk G. R., Jacobsson K., Nilsson K., Johansson M. J., Byström A. S., Persson O. P. (2001). A primordial tRNA modification required for the evolution of life? EMBO J. 20, 231–239. 10.1093/emboj/20.1.231 PubMed DOI PMC
Boal A. K., Grove T. L., McLaughlin M. I., Yennawar N. H., Booker S. J., Rosenzweig A. C. (2011). Structural basis for methyl transfer by a radical SAM enzyme. Science 332, 1089–1092. 10.1126/science.1205358 PubMed DOI PMC
Brzezicha B., Schmidt M., Makalowska I., Jarmolowski A., Pienkowska J., Szweykowska-Kulinska Z. (2006). Identification of human tRNA: m5C methyltransferase catalysing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNA Leu (CAA). Nucleic Acids Res. 34, 6034–6043. 10.1093/nar/gkl765 PubMed DOI PMC
Calvo O., Cuesta R., Anderson J., Gutierrez N., Garcia-Barrio M. T., Hinnebusch A. G., et al. . (1999). GCD14p, a repressor of GCN4 translation, cooperates with Gcd10p and Lhp1p in the maturation of initiator methionyl-tRNA in Saccharomyces cerevisiae. Mol. Cell Biol. 19, 4167–4181. 10.1128/mcb.19.6.4167 PubMed DOI PMC
Chan C. T., Pang Y. L., Deng W., Babu I. R., Dyavaiah M., Begley T. J., et al. . (2012). Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nat. Commun. 3:937. 10.1038/ncomms1938 PubMed DOI PMC
Chen C., Tuck S., Byström A. S. (2009). Defects in tRNA modification associated with neurological and developmental dysfunctions in Caenorhabditis elegans elongator mutants. PLoS Genet. 5:e1000561. 10.1371/journal.pgen.1000561 PubMed DOI PMC
Chen Y.-C., Kelley V. P., Stachura S. V., Garcia G. A. (2010). Characterization of the human tRNA-guanine transglycosylase: confirmation of the heterodimeric subunit structure. RNA 16, 958–968. 10.1261/rna.1997610 PubMed DOI PMC
Chen Y. L., Wu R. T. (1994). Altered queuine modification of tRNA involved in the differentiation of human K562 erythroleukemia cells in the presence of distinct differentiation inducers. Cancer Res. 54, 2192–2198. PubMed
Cohen J. S., Srivastava S., Farwell K. D., Lu H. M., Zeng W., Lu H., et al. . (2015). ELP2 is a novel gene implicated in neurodevelopmental disabilities. Am. J. Med. Genet. A. 167, 1391–1395. 10.1002/ajmg.a.36935 PubMed DOI
Czerwoniec A., Dunin-Horkawicz S., Purta E., Kaminska K. H., Kasprzak J. M., Bujmicki J. M., et al. . (2009). MODOMICS: a database of RNA modification pathways. 2008 update. Nucleic Acids Res. 37, D118–D121. 10.1093/nar/gkn710 PubMed DOI PMC
Deshpande K. L., Seubert P. H., Tillman D. M., Farkas W. R., Katze J. R. (1996). Cloning and characterization of cDNA encoding the rabbit tRNA-guanine transglycosylase 60-kDa subunit. Arch. Biochem. Biophys. 326, 1–7. 10.1006/abbi.1996.0039 PubMed DOI
Desrosiers R., Friderici K., Rottman F. (1974). Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc. Natl. Acad. Sci. U S A 71, 3971–3975. 10.1073/pnas.71.10.3971 PubMed DOI PMC
Dirheimer G., Baranowski W., Keith G. (1995). Variation in tRNA modifications, particularly of their queuine content in higher eukaryotes. Its relation to malignancy grading. Biochimie 77, 99–103. 10.1016/0300-9084(96)88111-9 PubMed DOI
Dubin D. T., Taylor R. H. (1975). The methylation state of polyA–containing–messenger RNA from cultured hamster cells. Nucleic Acids Res. 2, 1653–1658. 10.1093/nar/2.10.1653 PubMed DOI PMC
Duechler M., Leszczyńlska G., Sochacka E., Nawrot B. (2016). Nucleoside modfications in the regulation of gene expression: focus on tRNA. Cell Mol. Life Sci. 73, 3075–3095. 10.1007/s00018-016-2217-y PubMed DOI PMC
Dunin-Horkawicz S., Czerwoniec A., Gajda M. J., Feder M., Grosjean H., Bujnicki J. M. (2006). MODOMICS: a database of RNA modification pathways. Nucleic Acids Res. 34, D145–D149. 10.1093/nar/gkj084 PubMed DOI PMC
Edvardson S., Prunetti L., Arraf A., Haas D., Bacusmo J. M., Hu J. F., et al. . (2017). tRNA N6-adenosine threonylcarbamoyltransferase defect due to KAE1/TCS3 (OSGEP) mutation manifest by neurodegeneration and renal tubulopathy. Eur. J. Hum. Genet. 25, 545–551. 10.1038/ejhg.2017.30 PubMed DOI PMC
El Yacoubi B., Bailly M., de Crécy-Lagard V. (2012). Biosynthesis and function of posttranscriptional modifications of transfer RNAs. Annu. Rev. Genet. 46, 69–95. 10.1146/annurev-genet-110711-155641 PubMed DOI
Elliott M. S., Crane D. L. (1990). Protein kinase C modulation of queuine uptake in cultured human fibroblasts. Biochem. Biophys. Res. Commun. 171, 393–400. 10.1016/0006-291x(90)91406-i PubMed DOI
Endres L., Dedon P. C., Begley T. J. (2015). Codon-biased translation can be regulated by wobble-base tRNA modification systems during cellular stress responses. RNA Biol. 12, 603–614. 10.1080/15476286.2015.1031947 PubMed DOI PMC
Esberg A., Huang B., Johansson M. J. O., Byström A. S. (2006). Elevated levels of two tRNA species bypass the requirement of elongator complex in transcription and exocytosis. Mol. Cell 24, 139–148. 10.1016/j.molcel.2006.07.031 PubMed DOI
Farkas W. R., Jacobson K. B., Katzeöm J. R. (1984). Substrate and inhibitor specificity of tRNA-guanine ribosyltransferase. Biochim. Biophys. Acta 781, 64–75. 10.1016/0167-4781(84)90124-6 PubMed DOI
Gaur R., Björk G., Tuck S., Varshney U. (2007). Diet dependent depletion of queuosine in tRNAs in Caenorhabditis elegans does not lead to a developmental block. J. Biosci. 32, 747–754. 10.1007/s12038-007-0074-4 PubMed DOI
Ghadami S., Mohammadi H. M., Malbin J., Masoodifard M., Sarhaddi A. B., Tavakkoly-Bazzaz J., et al. . (2015). Frequencies of six (five novel) STR markers linked to TUSC3 (MRT7) or NSUN2 (MRT5) genes used for homozygosity mapping of recessive intellectual disability. Clin. Lab. 61, 925–932. 10.7754/clin.lab.2015.150101 PubMed DOI
Giege R., Sissler M., Florentz C. (1998). Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res. 26, 5017–5035. 10.1093/nar/26.22.5017 PubMed DOI PMC
Glatt S., Zabel R., Kolaj-Robin O., Onuma O. F., Baudin F., Graziadei A., et al. . (2016). Structural basis for tRNA modification by Elp3 from Dehalococcoides mccartyi. Nat. Struct. Mol. Biol. 23, 794–802. 10.1038/nsmb.3265 PubMed DOI PMC
Gong P., Li J., Dai L., Zhang K., Zheng Z., Gao X., et al. . (2008). Genetic variations in FTSJ1 influence cognitive ability in young males in the Chinese Han population. J. Neurogenet. 22, 277–287. 10.1080/01677060802337299 PubMed DOI
Grosjean H. (2009). “Nucleic acids are not boring long polymers of only four types of nucleotides: a guided tour,” in DNA and RNA Modification Enzymes: Structure, Mechanism, Function and Evolution, ed. Grosjean H. (Austin, TX: Landes Bioscience; ), 1–18.
Gu C., Begley T. J., Dedon P. C. (2014). tRNA modifications regulate translation during cellular stress. FEBS Lett. 588, 4287–4296. 10.1016/j.febslet.2014.09.038 PubMed DOI PMC
Gündüz U., Katze J. R. (1982). Salvage of the nucleic acid base queuine from queuine-containing tRNA by animal cells. Biochem. Biophys. Res. Commun. 109, 159–167. 10.1016/0006-291x(82)91579-0 PubMed DOI
Gündüz U., Katze J. R. (1984). Queuine salvage in mammalian cells. Evidence that queuine is generated from queuosine 5′-phosphate. J. Biol. Chem. 259, 1110–1113. PubMed
Guy M. P., Shaw M., Weiner C. L., Hobson L., Stark Z., Rose K., et al. . (2015). Defects in tRNA anticodon loop 2′-O-methylation are implicated in nonsyndromic X-linked intellectual disability due to mutations in FTSJ1. Hum. Mutat. 36, 1176–1187. 10.1002/humu.22897 PubMed DOI PMC
Hopper A. K., Phizicky E. M. (2003). tRNA transfers to the limelight. Genes Dev. 17, 162–180. 10.1101/gad.1049103 PubMed DOI
Hori H. (2014). Methylated nucleosides in tRNA and tRNA methyltransferases. Front. Genet. 5:144. 10.3389/fgene.2014.00144 PubMed DOI PMC
Hou Y.-M., Gamper H., Yang W. (2015). Post-transcriptional modifications to tRNA—a response to the genetic code degeneracy. RNA 21, 642–644. 10.1261/rna.049825.115 PubMed DOI PMC
Hussain S., Sajini A. A., Blanco S., Dietmann S., Lombard P., Sugimoto Y., et al. . (2013). NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep. 4, 255–261. 10.1016/j.celrep.2013.06.029 PubMed DOI PMC
Iwata-Reuyl D. (2003). Biosynthesis of the 7-deazaguanosine hypermodified nucleosides of transfer RNA. Bioorg. Chem. 31, 24–43. 10.1016/s0045-2068(02)00513-8 PubMed DOI
Jackman J. E., Alfonzo J. D. (2013). Transfer RNA modifications: nature’s combinatorial chemistry playground. Wiley Interdiscip. Rev. RNA 4, 35–48. 10.1002/wrna.1144 PubMed DOI PMC
Johansson M. J., Esberg A., Huang B., Björk G. R., Bystrom A. S. (2008). Eukaryotic wobble uridine modifications promote a functionally redundant decoding system. Mol. Cell Biol. 28, 3301–3312. 10.1128/MCB.01542-07 PubMed DOI PMC
Kadaba S., Krueger A., Trice T., Krecic A. M., Hinnebusch A. G., Anderson J. (2004). Nuclear surveillance and degradation of hypo-modified initiator tRNAMet in S. cerevisiae. Genes Dev. 18, 1227–1240. 10.1101/gad.1183804 PubMed DOI PMC
Karlsborn T., Tükenmez H., Chen C., Byström A. S. (2014). Familial dysautonomia (FD) patients have reduced levels of the modified wobble nucleoside mcm(5)s(2)U in tRNA. Biochem. Biophys. Res. Commun. 454, 441–445. 10.1016/j.bbrc.2014.10.116 PubMed DOI
Katze J. R., Basile B., McCloskey J. A. (1982). Queuine, a modified base incorporated posttranscriptionally into eukaryotic transfer RNA: wide distribution in nature. Science 216, 55–56. 10.1126/science.7063869 PubMed DOI
Kersten H. (1988). The nutrient factor queuine: biosynthesis, occurrence in transfer RNA and function. Biofactors 1, 27–29. 10.1016/b978-012417762-8.50088-0 PubMed DOI
Kersten H., Kersten W. (1990). “Biosynthesis and function of queuine and queosine tRNAs,” in Chromatography and Modification of Nucleosides. Part B. Biological Roles and Function of Modification, eds Gehrke C. W., Kuo K. C. T. (Amsterdam: Elsevier; ), B69–B108.
Khoddami V., Cairns B. R. (2013). Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nat. Biotechnol. 31, 458–464. 10.1038/nbt.2566 PubMed DOI PMC
Kobayashi Y., Momoi M. Y., Tominaga K., Momoi T., Nihei K., Yanagisawa M., et al. . (1990). A point mutation in the mitochondrial tRNA(Leu)(UUR) gene in MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes). Biochem. Biophys. Res. Commun. 173, 816–822. 10.1016/S0006-291X(05)80860-5 PubMed DOI
Kojic M., Wainwright B. (2016). The many faces of elongator in neurodevelopment and disease. Front. Mol. Neurosci. 9:115. 10.3389/fnmol.2016.00115 PubMed DOI PMC
Kolaj-Robin O., McEwen A. G., Cavarelli J., Séraphin B. (2015). Structure of the Elongator cofactor complex Kti11/Kti13 provides insight into the role of Kti13 in Elongator-dependent tRNA modification. FEBS J. 282, 819–833. 10.1111/febs.13199 PubMed DOI
Krisko A., Copic T., Gabaldón T., Lehner B., Supek F. (2014). Inferring gene function from evolutionary change in signatures of translation efficiency. Genome Biol. 15:R44. 10.1186/gb-2014-15-3-r44 PubMed DOI PMC
Lim V. I. (1994). Analysis of action of wobble nucleoside modifications on codon-anticodon pairing within the ribosome. J. Mol. Biol 240, 8–19. 10.1006/jmbi.1994.1413 PubMed DOI
Liu J., Straby K. B. (2000). The human tRNA(m22G26)dimethyltransferase: functional expression and characterization of a cloned hTRM1 gene. Nucleic Acids Res. 28, 3445–3451. 10.1093/nar/28.18.3445 PubMed DOI PMC
Manickam N., Joshi K., Bhatt M. J., Farabaugh P. J. (2016). Effects of tRNA modification on translational accuracy depend on intrinsic codon-anticodon strength. Nucleic Acids Res. 44, 1871–1881. 10.1093/nar/gkv1506 PubMed DOI PMC
Marks T., Farkas W. R. (1997). Effects of a diet deficient in tyrosine and queuine on germfree mice. Biochem. Biophys. Res. Commun. 230, 233–237. 10.1006/bbrc.1996.5768 PubMed DOI
Martinez F. J., Lee J. H., Lee J. E., Blanco S., Nickerson E., Gabriel S., et al. . (2012). Whole exome sequencing identifies a splicing mutation in NSUN2 as a cause of a Dubowitz-like syndrome. J. Med. Genet. 49, 380–385. 10.1136/jmedgenet-2011-100686 PubMed DOI PMC
Michaud J., Kudoh J., Berry A., Bonne-Tamir B., Lalioti M. D., Rossier C., et al. . (2000). Isolation and characterization of a human chromosome 21q22.3 gene (WDR4) and its mouse homologue that code for a WD-repeat protein. Genomics. 68, 71–79. 10.1006/geno.2000.6258 PubMed DOI
Morris R. C., Brooks B. J., Eriotou P., Kelly D. F., Sagar S., Hart K. L., et al. . (1995). Activation of transfer RNA-guanine ribosyltransferase by protein kinase C. Nucleic Acids Res. 23, 2492–2498. 10.1093/nar/23.13.2492 PubMed DOI PMC
Morris R. C., Brooks B. J., Hart K. L., Elliott M. S. (1996). Modulation of queuine uptake and incorporation into tRNA by protein kinase C and protein phosphatase. Biochim. Biophys. Acta. 1311, 124–132. 10.1016/0167-4889(95)00184-0 PubMed DOI
Morris R. C., Galicia M. C., Clase K. L., Elliott M. S. (1999). Determination of queuosine modification system deficiencies in cultured human cells. Mol. Genet. Metab. 68, 56–67. 10.1006/mgme.1999.2889 PubMed DOI
Nachtergaele S., He C. (2017). The emerging biology of RNA post-transcriptional modifications. RNA Biol. 14, 156–163. 10.1080/15476286.2016.1267096 PubMed DOI PMC
Nagatsu T., Ichinose H. (1996). GTP cyclohydrolase I gene, tetrahydrobiopterin and tyrosine hydroxylase gene: their relations to dystonia and parkinsonism. Neurochem. Res. 21, 245–250. 10.1007/bf02529141 PubMed DOI
Najmabadi H., Hu H., Garshasbi M., Zemojtel T., Abedini S. S., Chen W., et al. . (2011). Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 478, 57–63. 10.1038/nature10423 PubMed DOI
Nguyen L., Humbert S., Saudou F., Chariot A. (2010). Elongator—an emerging role in neurological disorders. Trends Mol. Med. 16, 1–6. 10.1016/j.molmed.2009.11.002 PubMed DOI
Nishimura S. (1983). Structure, biosynthesis, and function of queuosine in transfer RNA. Prog. Nucleic Acid Res. Mol. Biol. 28, 49–73. 10.1016/s0079-6603(08)60082-3 PubMed DOI
Ogle J. M., Brodersen D. E., Clemons W. M., Jr., Tarry M. J., Carter A. P., Ramakrishnan V. (2001). Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292, 897–902. 10.1126/science.1060612 PubMed DOI
Pathak C., Jaiswal Y. K., Vinayak M. (2008). Modified base queuine promotes cellular antioxidant defense system in cancer. Biosci. Rep. 28, 73–81. 10.1042/BSR20070011 PubMed DOI
Perry R. P., Kelley D. E. (1974). Existence of methylated messenger RNA in mouse L cells. Cell 1, 37–42. 10.1016/0092-8674(74)90153-6 DOI
Phizicky E. M., Hopper A. K. (2010). tRNA biology charges to the front. Genes Dev. 24, 1832–1860. 10.1101/gad.1956510 PubMed DOI PMC
Rakovich T., Boland C., Bernstein I., Chikwana V. M., Iwata-Reuyl D., Kelly V. P. (2011). Queuosine deficiency in eukaryotes compromises tyrosine production through increased tetrahydrobiopterin oxidation. J. Biol. Chem. 286, 19354–19363. 10.1074/jbc.M111.219576 PubMed DOI PMC
Reinthaler E. M., Lal D., Jurkowski W., Feucht M., Steinböck H., Gruber-Sedlmayr U., et al. . (2014). Analysis of ELP4, SRPX2, and interacting genes in typical and atypical rolandic epilepsy. Epilepsia 55, e89–e93. 10.1111/epi.12712 PubMed DOI
Rozenski J., Crain P. F., McCloskey J. A. (1999). The RNA modification database: 1999 update. Nucleic Acids Res. 27, 196–197. 10.1093/nar/27.1.196 PubMed DOI PMC
Shaheen R., Han L., Faqeih E., Ewida N., Alobeid E., Pizicky E. M., et al. . (2016). A homozygous truncating mutation in PUS3 expands the role of tRNA modification in normal cognition. Hum. Genet. 135, 707–713. 10.1007/s00439-016-1665-7 PubMed DOI PMC
Siard T. J., Jacobson K. B., Farkas W. R. (1991). Queuine metabolism and cadmium toxicity in Drosophila melanogaster. Biofactors 3, 41–47. PubMed
Simpson C. L., Lemmens R., Miskiewicz K., Broom W. J., Hansen V. K., van Vught P. W., et al. . (2009). Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration. Hum. Mol. Genet. 18, 472–481. 10.1093/hmg/ddn375 PubMed DOI PMC
Slany R. K., Müller S. O. (1995). tRNA-guanine transglycosylase from bovine liver. Purification of the enzyme to homogeneity and biochemical characterization. Eur. J. Biochem. 230, 221–228. 10.1111/j.1432-1033.1995.tb20554.x PubMed DOI
Song J., Yi C. (2017). Chemical modifications to RNA: a new layer of gene expression regulation. ACS Chem. Biol. 12, 316–325. 10.1021/acschembio.6b00960 PubMed DOI
Torres A. G., Batlle E., Ribas de Pouplana L. (2014). Role of tRNA modifications in human diseases. Trends Mol. Med. 20, 306–314. 10.1016/j.molmed.2014.01.008 PubMed DOI
Towns W. L., Begley T. J. (2012). Transfer RNA methytransferases and their corresponding modifications in budding yeast and humans: activities, predications, and potential roles in human health. DNA Cell Biol. 31, 434–454. 10.1089/dna.2011.1437 PubMed DOI PMC
Varghese S., Cotter M., Chevot F., Fergus C., Cunningham C., Mills K. H., et al. . (2017). In vivo modification of tRNA with an artificial nucleobase leads to full disease remission in an animal model of multiple sclerosis. Nucleic Acids Res. 45, 2029–2030. 10.1093/nar/gkw847 PubMed DOI PMC
Vinayak M., Pathak C. (2010). Queuosine modification of tRNA: its divergent role in cellular machinery. Biosci. Rep. 30, 135–148. 10.1042/BSR20090057 PubMed DOI
Yokoyama S., Nishimura S. (1995). “Modified nucleosides and codon recognition,” in tRNA: Structure, Biosynthesis, and Function, eds Söll D., RajBhandary U. L. (Washington, DC: ASM Press; ), 207–223.
Yusupov M. M., Yusupova G. Z., Baucom A., Lieberman K., Earnest T. N., Cate J. H., et al. . (2001). Crystal structure of the ribosome at 5.5 A resolution. Science 292, 883–896. 10.1126/science.1060089 PubMed DOI
Zallot R., Brochier-Armanet C., Gaston K. W., Forouhar F., Limbach P. A., Hunt J. F., et al. . (2014). Plant, animal and fungal micronutrient queuosine is salvaged by members of the DUF2419 protein family. ACS Chem. Biol. 9, 1812–1825. 10.1021/cb500278k PubMed DOI PMC