Theta-paced flickering between place-cell maps in the hippocampus: A model based on short-term synaptic plasticity

. 2017 Sep ; 27 (9) : 959-970. [epub] 20170614

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28558154

Hippocampal place cells represent different environments with distinct neural activity patterns. Following an abrupt switch between two familiar configurations of visual cues defining two environments, the hippocampal neural activity pattern switches almost immediately to the corresponding representation. Surprisingly, during a transient period following the switch to the new environment, occasional fast transitions between the two activity patterns (flickering) were observed (Jezek, Henriksen, Treves, Moser, & Moser, ). Here we show that an attractor neural network model of place cells with connections endowed with short-term synaptic plasticity can account for this phenomenon. A memory trace of the recent history of network activity is maintained in the state of the synapses, allowing the network to temporarily reactivate the representation of the previous environment in the absence of the corresponding sensory cues. The model predicts that the number of flickering events depends on the amplitude of the ongoing theta rhythm and the distance between the current position of the animal and its position at the time of cue switching. We test these predictions with new analysis of experimental data. These results suggest a potential role of short-term synaptic plasticity in recruiting the activity of different cell assemblies and in shaping hippocampal activity of behaving animals.

Zobrazit více v PubMed

Battaglia, F. P. , & Treves, A. (1998). Attractor neural networks storing multiple space representations: A model for hippocampal place fields. Physical Review E, 58(6), 7738–7753.

Ben‐Yishai, R. , Bar‐Or, R. L. , & Sompolinsky, H. (1995). Theory of orientation tuning in visual cortex. Proceedings of the National Academy of Sciences of United States of America, 92(9), 3844–3848. PubMed PMC

Botzung, A. , Denkova, E. , & Manning, L. (2008). Experiencing past and future personal events: Functional neuroimaging evidence on the neural bases of mental time travel. Brain and Cognition, 66, 202–2012. PubMed

Brandon, M. P. , Koenig, J. , Leutgeb, J. K. , & Leutgeb, S. (2014). New and distinct hippocampal place codes are generated in a new environment during septal inactivation. Neuron, 82(4), 789–796. PubMed PMC

Buzsaki, G. (2002). Theta oscillations in the hippocampus. Neuron, 31(3), 325–340. PubMed

Cei, A. , Girardeau, G. , Drieu, C. , Kanbi, K. E. , & Zugaro, M. (2014). Reversed theta sequences of hippocampal cell assemblies during backward travel. Nature Neuroscience, 17(5), 719–724. PubMed

Conklin, J. , & Eliasmith, C. (2005). A controlled attractor network model of path integration in the rat. Journal of Computational Neuroscience, 18:183–203. PubMed

Diba, K. , & Buzsáki, G. (2007). Forward and reverse hippocampal place‐cell sequences during ripples. Nature Neuroscience, 10(10), 1241–1242. PubMed PMC

Dupret, D. , O'neill, J. , & Csicsvari, J. (2013). Dynamic reconfiguration of hippocampal interneuron circuits during spatial learning. Neuron, 78, 166–180. PubMed PMC

Faisal, A. , Selen, L. P. J. , & Wolpert, D. M. (2008). Noise in the nervous system. Nature Reviews Neuroscience, 9(4), 292–303. PubMed PMC

Fung, C. C. A. , Wong, K. Y. M. , Wang, H. , & Wu, S. (2012). Dynamical synapses enhance neural information processing: Gracefulness, accuracy and mobility. Neural Computation, 24(5), 1147–1185. PubMed

Foster, D. J. , & Wilson, M. A. (2006). Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature, 440(7084), 680–683. PubMed

Foster, D. J. , & Wilson, M. A. (2007). Hippocampal theta sequences. Hippocampus, 17(11), 1093–1099. PubMed

Fyhn, M. , Hafting, T. , Treves, A. , Moser, M. B. , & Moser, E. I. (2007). Hippocampal remapping and grid realignment in entorhinal cortex. Nature, 446(7132), 190–194. PubMed

Gill, P. R. , Mizumori, S. J. Y. , & Smith, D. M. (2011). Hippocampal episode fields develop with learning. Hippocampus, 21(11), 1240–1249. PubMed PMC

Guzman, S. J. , Schlögl, A. , Frotscher, M. , & Jonas, P. (2016). Synaptic mechanisms of pattern completion in the hippocampal CA3 network. Science, 353(6304), 1117–1123. PubMed

Hasselmo, M. E. , Clara, B. , & Bradley, P. W. (2002). A proposed function for hippocampal theta rhythm: Separate phases of encoding and retrieval enhance reversal of prior learning. Neural Computation, 14(4), 793–817. PubMed

Hedrick, K. R. , & Zhang, K. (2016). Megamap: flexible representation of a large space embedded with nonspatial information by a hippocampal attractor network. Journal of neurophysiology, 116(2), 868–891. PubMed PMC

Hopfield, J. J. (2010). Neurodynamics of mental exploration. Proceeding of the National Academy of Science of United States of America, 107(4), 1648–1653. PubMed PMC

Howell, D. (2009). Statistical methods for psychology. (7th edition). Wadsorth, Cengage Learning.

Itskov, V. , Hansel, D. , & Tsodyks, M. (2011). Short‐term facilitation may stabilize parametric working memory trace. Frontiers in Computational Neuroscience, 5, 40. PubMed PMC

Jackson, J. , & Reddish, D. (2007). Network dynamics of hippocampal cell‐assemblies resemble multiple spatial maps within single tasks. Hippocampus, 17, 1209–1229. PubMed

Jezek, K. , Henriksen, E. J. , Treves, A. , Moser, E. I. , & Moser, M. B. (2011). Theta‐paced flickering between place‐cell maps in the hippocampus. Nature, 478(7368), 246–249. PubMed

Kelemen, E. , & Fenton, A. A. (2010). Dynamic grouping of hippocampal neural activity during cognitive control of two spatial frames. PLoS Biology, 8(6), e1000403. PubMed PMC

Leutgeb, S. , Leutgeb, J. K. , Barnes, C. A. , Moser, E. I. , McNaughton, B. L. , & Moser, M. B. (2005). Independent codes for spatial and episodic memory in hippocampal neuronal ensembles. Science (New York, N.Y.), 309(5734), 619–623. PubMed

MacDonald, C. J. , Carrow, S. , Place, R. , & Eichenbaum, H. (2013). Distinct hippocampal time cell sequences represent odor memories in immobilized rats. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(36), 14607–14616. PubMed PMC

MacDonald, C. J. , Lepage, K. Q. , Eden, U. T. , & Eichenbaum, H. (2011). Hippocampal ‘time cells’ bridge the gap in memory for discontiguous events. Neuron, 71(4), 737–749. PubMed PMC

Malvache, A. , Reichinnek, S. , Villette, V. , Haimerl, C. , & Cossart, R. (2016). Awake hippocampal reactivations project onto orthogonal neuronal assemblies. Science, 353(6305), 1280–1283. PubMed

McNaughton, B. L. , Barnes, C. A. , Gerrard, J. L. , Gothard, K. , Jung, M. W. , Knierim, J. J. , … Udrimoti, H. (1996). Deciphering the hippocampal polyglot: the hippocampus as a path integration system. Journal of Experimental Biology, 199(1), 173–185. PubMed

McNaughton, B. L. , & Morris, R. G. M. (1987). Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends in Neurosciences, 10(10), 408–415.

Miles, R. , & Wong, R. K. (1986). Excitatory synaptic interactions between CA3 neurones in the guinea‐pig hippocampus. The Journal of Physiology, 373(1), 397–418. PubMed PMC

Monasson, R. , & Rosay, S. (2015). Transitions between spatial attractors in place‐cell models. Physical Review Letters, 115, 098101. PubMed

Mongillo, G. , Barak, O. , & Tsodyks, M. (2008). Synaptic theory of working memory. Science, 319(5869), 1543–1546. PubMed

Morris, R. G. M. , Garrud, P. , Rawlins, J. N. P. , & O'keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681–683. PubMed

Muller, R. U. , & Kubie, J. L. (1987). The effects of changes in the environment on the spatial firing of hippocampal complex‐spike cells. The Journal of Neuroscience, 7(7), 1951–1968. PubMed PMC

Nakazawa, K. , McHugh, T. J. , Wilson, M. A. , & Tonegawa, S. (2004). NMDA receptors, place cells and hippocampal spatial memory. Nature Reviews Neuroscience, 5(5), 361–372. PubMed

O'Keefe, J. , & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely‐moving rat. Brain Research, 34(1), 171–175. PubMed

O'Keefe, J. , & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Clarendon Press.

Pastalkova, E. , Itskov, V. , Amarasingham, A. , & Buzsaki, G. (2008). Internally generated cell assembly sequences in the rat hippocampus. Science, 321(5894), 1322–1327. PubMed PMC

Pinto, D. , & Ermentrout, G. (2001). Spatially structured activity in synaptically coupled neuronal networks: I. Traveling fronts and pulses. SIAM Journal on Applied Mathematics, 62(1), 206–225.

Pfeiffer, B. E. , & Foster, D. J. (2013). Hippocampal place‐cell sequences depict future paths to remembered goals. Nature, 497(7447), 74–79. PubMed PMC

Redish, A. D. (1999). Beyond the cognitive map: From place cells to episodic memory. MIT Press.

Redish, A. D. , & Touretzky, D. S. (1998). The role of the hippocampus in solving the morris water maze. Neural Computation, 10(1), 73–111. PubMed

Romani, S. , & Tsodyks, M. (2010). Continuous attractors with morphed/correlated maps. Plos Computational Biology, 6(8), e1000869. PubMed PMC

Romani, S. , & Tsodyks, M. (2015). Short‐term plasticity based network model of place cells dynamics. Hippocampus, 25, 94–105. PubMed

Salin, P. A. , Scanziani, M. , Malenka, R. C. , & Nicoll, R. A. (1996). Distinct short‐term plasticity at two excitatory synapses in the hippocampus. Proceedings of the National Academy of Sciences of United States of America, 93(23), 13304–13309. PubMed PMC

Samsonovich, A. , & McNaughton, B. L. (1997). Path integration and cognitive mapping in a continuous attractor neural network model. The Journal of Neuroscience, 17(15), 5900–5920. PubMed PMC

Savin, C. , Dayan, P. , & Lengyel, M. (2014). Optimal recall from bounded metaplastic synapses: Predicting functional adaptations in hippocampal area CA3. PLoS Computational Biology, 10(2), e1003489. PubMed PMC

Scoville, W. B. , & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery & Psychiatry, 20(1), 11–21. PubMed PMC

Selig, D. K. , Nicoll, R. A. , & Malenka, C. (1999). Hippocampal long‐term potentiation preserves the fidelity of postsynaptic responses to presynaptic bursts. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 19(4), 1236–1246. PubMed PMC

Stella, F. , & Treves, A. (2011). Associative memory storage and retrieval: Involvement of theta oscillations in hippocampal information processing. Neural Plasticity, 683961. PubMed PMC

Suddendorf, T. , & Corballis, M. C. (2007). The evolution of foresight: What is mental time travel, and is it unique to humans?. Behavioral and Brain Sciences, 30, 299–351. PubMed

Touretzky, D. S. , & Redish, R. D. (1996). Theory of rodent navigation based on interacting representations of space. Hippocampus, 6(3), 247–270. PubMed

Treves, A. , & Rolls, E. T. (1992). Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus, 2(2), 189–199. PubMed

Tsodyks, M. (1999). Attractor neural network models of spatial maps in hippocampus. Hippocampus, 9(4), 481–489. PubMed

Tsodyks, M. , Pawelzik, K. , & Markram, H. (1998). Neural networks with dynamic synapses. Neural Computation, 10(4), 821–835. PubMed

Tsodyks, M. , & Sejnowski, T. (1995). Associative memory and hippocampal place cells. International Journal of Neural Systems, 6, 81–86.

Tsodyks, M. , Skaggs, W. E. , Sejnowski, T. , & McNaughton, B. L. (1996). Population dynamics and theta rhythm phase precession of hippocampal place cell firing: A spiking neuron model. Hippocampus, 6(3), 271–280. PubMed

Vanderwolf, C. H. (1969). Hippocampal electrical activity and voluntary movement in the rat. Electroencephalography and Clinical Neurophysiology, 26(4), 407–418. PubMed

Wang, Y. , Romani, S. , Lustig, B. , Leonardo, A. , & Pastalkova, E. (2015). Theta sequences are essential for internally generated hippocampal firing fields. Nature Neuroscience, 18(2), 282–288. PubMed

Wikenheiser, A. M. , & Redish, A. D. (2015). Decoding the cognitive map: Ensemble hippocampal sequences and decision making. Current Opinion in Neurobiology, 32, 8–15. PubMed PMC

Wills, T. J. , Lever, C. , Cacucci, F. , Burgess, N. , & O'keefe, J. (2005). Attractor dynamics in the hippocampal representation of the local environment. Science, 308, 873–876. PubMed PMC

Wilson, H. R. , & Cowan, J. D. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, 13(2), 55–80. PubMed

York, L. C. , & Van Rossum, M. C. W. (2009). Recurrent networks with short term synaptic depression. Journal of Computational Neuroscience, 27(3), 607–620. PubMed

Zhang, K. (1996). Representation of spatial orientation by the intrinsic dynamics of the head‐direction cell ensemble: A theory. Journal of Neuroscience, 16(6), 2112–2126. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...