A high-throughput assay for quantitative measurement of PCR errors
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28578414
PubMed Central
PMC5457411
DOI
10.1038/s41598-017-02727-8
PII: 10.1038/s41598-017-02727-8
Knihovny.cz E-zdroje
- MeSH
- alely MeSH
- analýza rozptylu MeSH
- genová knihovna MeSH
- jednonukleotidový polymorfismus MeSH
- polymerázová řetězová reakce metody normy MeSH
- sekvenční analýza DNA MeSH
- vysoce účinné nukleotidové sekvenování * metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The accuracy with which DNA polymerase can replicate a template DNA sequence is an extremely important property that can vary by an order of magnitude from one enzyme to another. The rate of nucleotide misincorporation is shaped by multiple factors, including PCR conditions and proofreading capabilities, and proper assessment of polymerase error rate is essential for a wide range of sensitive PCR-based assays. In this paper, we describe a method for studying polymerase errors with exceptional resolution, which combines unique molecular identifier tagging and high-throughput sequencing. Our protocol is less laborious than commonly-used methods, and is also scalable, robust and accurate. In a series of nine PCR assays, we have measured a range of polymerase accuracies that is in line with previous observations. However, we were also able to comprehensively describe individual errors introduced by each polymerase after either 20 PCR cycles or a linear amplification, revealing specific substitution preferences and the diversity of PCR error frequency profiles. We also demonstrate that the detected high-frequency PCR errors are highly recurrent and that the position in the template sequence and polymerase-specific substitution preferences are among the major factors influencing the observed PCR error rate.
Central European Institute of Technology Masaryk University Brno Czech Republic
Pirogov Russian National Research Medical University Moscow Russia
Shemyakin Ovchinnikov Institute of Bioorganic Chemistry RAS Moscow Russia
Zobrazit více v PubMed
Qiu X, et al. Evaluation of PCR-generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning. Applied and environmental microbiology. 2001;67:880–887. doi: 10.1128/AEM.67.2.880-887.2001. PubMed DOI PMC
Mike Makrigiorgos G. PCR-based detection of minority point mutations. Human mutation. 2004;23:406–412. doi: 10.1002/humu.20024. PubMed DOI
Kebschull JM, Zador AM. Sources of PCR-induced distortions in high-throughput sequencing data sets. Nucleic Acids Res. 2015;43:e143. doi: 10.1093/nar/gku1263. PubMed DOI PMC
Brandariz-Fontes C, et al. Effect of the enzyme and PCR conditions on the quality of high-throughput DNA sequencing results. Scientific reports. 2015;5:8056. doi: 10.1038/srep08056. PubMed DOI PMC
Marx V. PCR: the price of infidelity. Nat Methods. 2016;13:475–479. doi: 10.1038/nmeth.3868. PubMed DOI
Lundberg KS, et al. High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene. 1991;108:1–6. doi: 10.1016/0378-1119(91)90480-Y. PubMed DOI
Cline J, Braman JC, Hogrefe HH. PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Res. 1996;24:3546–3551. doi: 10.1093/nar/24.18.3546. PubMed DOI PMC
McInerney P, Adams P, Hadi MZ. Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase. Molecular biology international. 2014;2014:287430–8. doi: 10.1155/2014/287430. PubMed DOI PMC
Schirmer M, et al. Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Res. 2015;43:e37–e37. doi: 10.1093/nar/gku1341. PubMed DOI PMC
Brodin J, et al. PCR-induced transitions are the major source of error in cleaned ultra-deep pyrosequencing data. PLoS One. 2013;8:e70388. doi: 10.1371/journal.pone.0070388. PubMed DOI PMC
Shao W, et al. Analysis of 454 sequencing error rate, error sources, and artifact recombination for detection of Low-frequency drug resistance mutations in HIV-1 DNA. Retrovirology. 2013;10:18. doi: 10.1186/1742-4690-10-18. PubMed DOI PMC
Casbon JA, Osborne RJ, Brenner S, Lichtenstein CP. A method for counting PCR template molecules with application to next-generation sequencing. Nucleic Acids Res. 2011;39:e81–e81. doi: 10.1093/nar/gkr217. PubMed DOI PMC
Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B. Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci USA. 2011;108:9530–9535. doi: 10.1073/pnas.1105422108. PubMed DOI PMC
Kivioja T, et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods. 2012;9:72–74. doi: 10.1038/nmeth.1778. PubMed DOI
Shugay M, et al. Towards error-free profiling of immune repertoires. Nat Methods. 2014;11:653–655. doi: 10.1038/nmeth.2960. PubMed DOI
Gregory MT, et al. Targeted single molecule mutation detection with massively parallel sequencing. Nucleic Acids Res. 2016;44:e22–e22. doi: 10.1093/nar/gkv915. PubMed DOI PMC
Cha RS, Thilly WG. Specificity, efficiency, and fidelity of PCR. PCR methods and applications. 1993;3:S18–29. doi: 10.1101/gr.3.3.S18. PubMed DOI
Sun F. The polymerase chain reaction and branching processes. Journal of computational biology: a journal of computational molecular cell biology. 1995;2:63–86. doi: 10.1089/cmb.1995.2.63. PubMed DOI
Gevertz JL, Dunn SM, Roth CM. Mathematical model of real-time PCR kinetics. Biotechnology and bioengineering. 2005;92:346–355. doi: 10.1002/bit.20617. PubMed DOI
Lujan SA, et al. Heterogeneous polymerase fidelity and mismatch repair bias genome variation and composition. Genome Res. 2014;24:1751–1764. doi: 10.1101/gr.178335.114. PubMed DOI PMC
Keller I, Bensasson D, Nichols RA. Transition-transversion bias is not universal: a counter example from grasshopper pseudogenes. PLoS genetics. 2007;3:e22. doi: 10.1371/journal.pgen.0030022. PubMed DOI PMC
Sato KA, et al. Individualized Mutation Detection in Circulating Tumor DNA for Monitoring Colorectal Tumor Burden Using a Cancer-Associated Gene Sequencing Panel. PLoS One. 2016;11:e0146275. doi: 10.1371/journal.pone.0146275. PubMed DOI PMC
Robasky K, Lewis NE, Church GM. The role of replicates for error mitigation in next-generation sequencing. Nature reviews. Genetics. 2014;15:56–62. doi: 10.1038/nrg3655. PubMed DOI PMC
Rogozin IB, Pavlov YI. Theoretical analysis of mutation hotspots and their DNA sequence context specificity. Mutation research. 2003;544:65–85. doi: 10.1016/S1383-5742(03)00032-2. PubMed DOI
Hoffmann C, et al. DNA bar coding and pyrosequencing to identify rare HIV drug resistance mutations. Nucleic Acids Res. 2007;35:e91. doi: 10.1093/nar/gkm435. PubMed DOI PMC
Schmitt MW, et al. Detection of ultra-rare mutations by next-generation sequencing. Proc Natl Acad Sci USA. 2012;109:14508–14513. doi: 10.1073/pnas.1208715109. PubMed DOI PMC
Orton RJ, et al. Distinguishing low frequency mutations from RT-PCR and sequence errors in viral deep sequencing data. BMC Genomics. 2015;16:229. doi: 10.1186/s12864-015-1456-x. PubMed DOI PMC
Stahlberg A, et al. Simple, multiplexed, PCR-based barcoding of DNA enables sensitive mutation detection in liquid biopsies using sequencing. Nucleic Acids Res. 2016;44:e105–e105. doi: 10.1093/nar/gkw224. PubMed DOI PMC
Ignatov KB, et al. A strong strand displacement activity of thermostable DNA polymerase markedly improves the results of DNA amplification. Biotechniques. 2014;57:81–87. doi: 10.2144/000114198. PubMed DOI
Ignatov KB, Bashirova AA, Miroshnikov AI, Kramarov VM. Mutation S543N in the thumb subdomain of the Taq DNA polymerase large fragment suppresses pausing associated with the template structure. FEBS Lett. 1999;448:145–148. doi: 10.1016/S0014-5793(99)00353-1. PubMed DOI
Shugay M, et al. MAGERI: Computational pipeline for molecular-barcoded targeted resequencing. PLOS Computational Biology. 2017;13:e1005480. doi: 10.1371/journal.pcbi.1005480. PubMed DOI PMC