Timing Is Important: Unmanned Aircraft vs. Satellite Imagery in Plant Invasion Monitoring
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28620399
PubMed Central
PMC5449470
DOI
10.3389/fpls.2017.00887
Knihovny.cz E-zdroje
- Klíčová slova
- UAV, alien species, giant hogweed, knotweed, plant phenology, remote sensing detection,
- Publikační typ
- časopisecké články MeSH
The rapid spread of invasive plants makes their management increasingly difficult. Remote sensing offers a means of fast and efficient monitoring, but still the optimal methodologies remain to be defined. The seasonal dynamics and spectral characteristics of the target invasive species are important factors, since, at certain time of the vegetation season (e.g., at flowering or senescing), plants are often more distinct (or more visible beneath the canopy). Our aim was to establish fast, repeatable and a cost-efficient, computer-assisted method applicable over larger areas, to reduce the costs of extensive field campaigns. To achieve this goal, we examined how the timing of monitoring affects the detection of noxious plant invaders in Central Europe, using two model herbaceous species with markedly different phenological, structural, and spectral characteristics. They are giant hogweed (Heracleum mantegazzianum), a species with very distinct flowering phase, and the less distinct knotweeds (Fallopia japonica, F. sachalinensis, and their hybrid F. × bohemica). The variety of data generated, such as imagery from purposely-designed, unmanned aircraft vehicle (UAV), and VHR satellite, and aerial color orthophotos enabled us to assess the effects of spectral, spatial, and temporal resolution (i.e., the target species' phenological state) for successful recognition. The demands for both spatial and spectral resolution depended largely on the target plant species. In the case that a species was sampled at the most distinct phenological phase, high accuracy was achieved even with lower spectral resolution of our low-cost UAV. This demonstrates that proper timing can to some extent compensate for the lower spectral resolution. The results of our study could serve as a basis for identifying priorities for management, targeted at localities with the greatest risk of invasive species' spread and, once eradicated, to monitor over time any return. The best mapping strategy should reflect morphological and structural features of the target plant and choose appropriate spatial, spectral, and temporal resolution. The UAV enables flexible data acquisition for required time periods at low cost and is, therefore, well-suited for targeted monitoring; while satellite imagery provides the best solution for larger areas. Nonetheless, users must be aware of their limits.
Department of Ecology Faculty of Science Charles UniversityPrague Czechia
Faculty of Science Institute for Environmental Studies Charles UniversityPrague Czechia
Institute for Aerospace Engineering Brno University of TechnologyBrno Czechia
Institute of Botany The Czech Academy of SciencesPrůhonice Czechia
Zobrazit více v PubMed
Agisoft (2016). Agisoft PhotoScan. Available online at: http://www.agisoft.com/ (Accessed September 25, 2016).
Andermann C., Gloaguen R. (2009). Estimation of erosion in tectonically active orogenies. Example from the Bhotekoshi catchment, Himalaya (Nepal). Int. J. Remote Sens. 30, 3075–3096. 10.1080/01431160802558733 DOI
Andrew M. E., Ustin S. L. (2006). Spectral and physiological uniqueness of perennial pepperweed (Lepidium latifolium). Weed Sci. 54, 1051–1062. 10.1614/WS-06-063R1.1 DOI
Andrew M. E., Ustin S. L. (2008). The role of environmental context in mapping invasive plants with hyperspectral image data. Remote Sens. Environ. 112, 4301–4317. 10.1016/j.rse.2008.07.016 DOI
Asner G. P., Hughes R. F., Vitousek P. M., Knapp D. E., Kennedy-Bowdoin T., Boardman J., et al. . (2008). Invasive plants transform the three-dimensional structure of rain forests. Proc. Natl. Acad. Sci. U.S.A. 105, 4519–4523. 10.1073/pnas.0710811105 PubMed DOI PMC
Atkinson P. M., Tatnall A. R. L. (1997). Introduction - neural networks in remote sensing. Int. J. Remote Sens. 18, 699–709. 10.1080/014311697218700 DOI
Beerling D. J., Bailey J. P., Conolly A. P. (1994). Fallopia japonica (Houtt.) ronse decraene. J. Ecol. 82, 959–979. 10.2307/2261459 DOI
Bímová K., Mandák B., Pyšek P. (2003). Experimental study of vegetative regeneration in four invasive Fallopia taxa (Polygonaceae). Plant Ecol. 166, 1–16. 10.1023/A:1023299101998 DOI
Blaschke T. (2010). Object based image analysis for remote sensing. ISPRS J. Photogrammetry and remote sensing 65, 2–16. 10.1016/j.isprsjprs.2009.06.004 PubMed DOI PMC
Blaschke T., Hay G. J., Kelly M., Lang S., Hofmann P., Addink E., et al. . (2014). Geographic object-based image analysis–towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 87, 180–191. 10.1016/j.isprsjprs.2013.09.014 PubMed DOI PMC
Bradley B. A. (2014). Remote detection of invasive plants: a review of spectral, textural and phenological approaches. Biol. Invasions 16, 1411–1425. 10.1007/s10530-013-0578-9 DOI
Breiman L. (2001). Random forests. Mach. Learn. 45, 5–32. 10.1023/A:1010933404324 DOI
Calviño-Cancela M., Méndez-Rial R., Reguera-Salgado J., Martín-Herrero J. (2014). Alien plant monitoring with ultralight airborne imaging spectroscopy. PLoS ONE 9:e102381. 10.1371/journal.pone.0102381 PubMed DOI PMC
Congalton R. G., Green K. (1999). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. New York, NY: Lewis Publishers.
Cutler D. R., Edwards T. C., Beard K. H., Cutler A., Hess K. T., Gibson J., et al. . (2007). Random forests for classification in ecology. Ecology 88, 2783–2792. 10.1890/07-0539.1 PubMed DOI
CUZK (2015). Orthophoto of the Czech Republic 2015. Available online at: http://geoportal.cuzk.cz/WMS_ORTOFOTO_PUB/WMService.aspx (Accessed July 25, 2016).
DAISIE (2012). European Invasive Alien Species Gateway. Available online at: http://www.europe-aliens.org/
Dandois J. P., Ellis E. C. (2010). Remote sensing of vegetation structure using computer vision. Remote Sens. 2, 1157–1176. 10.3390/rs2041157 DOI
Dorigo W., Lucieer A., Podobnikar T., Čarni A. (2012). Mapping invasive Fallopia japonica by combined spectral, spatial, and temporal analysis of digital orthophotos. Int. J. Appl. Earth Observ. Geoinform. 19, 185–195. 10.1016/j.jag.2012.05.004 DOI
Duro D. C., Franklin S. E., Dubé M. G. (2012). A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 118, 259–272. 10.1016/j.rse.2011.11.020 DOI
eCognition Developer 9.2 Reference Book (2016). Trimble Germany GmbH. Available online at: http://www.ecognition.com/
ESRI (2016). Collector for ArcGIS. Available online at: https://doc.arcgis.com/en/collector (Accessed December 5, 2016).
Foody G. M. (2002). Status of land cover classification accuracy assessment. Remote Sens. Environ. 80, 185–201. 10.1016/S0034-4257(01)00295-4 DOI
Foody G. M., Mathur A. (2004). Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification. Remote Sens. Environ. 93, 107–117. 10.1016/j.rse.2004.06.017 DOI
Frazier A. E., Wang L. (2011). Characterizing spatial patterns of invasive species using sub-pixel classifications. Remote Sens. Environ. 115, 1997–2007. 10.1016/j.rse.2011.04.002 DOI
Fridley J. D. (2012). Extended leaf phenology and the autumn niche in deciduous forest invasions. Nature 485, 359–362. 10.1038/nature11056 PubMed DOI
Ge S., Everitt J., Carruthers R., Gong P., Anderson G. (2006). Hyperspectral characteristics of canopy components and structure for phenological assessment of an invasive weed. Environ. Monit. Assess. 120, 109–126. 10.1007/s10661-005-9052-1 PubMed DOI
Gioria M., Pyšek P., Osborne B. A. (2016). Timing is everything: does early and late germination favor invasions by herbaceous alien plants? J. Plant Ecol. 10.1093/jpe/rtw105 DOI
Haralick R. M., Shanmugam K. (1973). Textural features for image classification. IEEE Trans. Syst. Man Cybern. 610–621. 10.1109/TSMC.1973.4309314 DOI
Huang C. Y., Asner G. P. (2009). Applications of remote sensing to alien invasive plant studies. Sensors 9, 4869–4889. 10.3390/s90604869 PubMed DOI PMC
Jones D., Pike S., Thomas M., Murphy D. (2011). Object-based image analysis for detection of Japanese Knotweed s.l. taxa (Polygonaceae) in Wales (UK). Remote Sens. 3, 319–342. 10.3390/rs3020319 DOI
Kaiser B. A., Burnett K. M. (2010). Spatial economic analysis of early detection and rapid response strategies for an invasive species. Resour. Energy Econ. 32, 566–585. 10.1016/j.reseneeco.2010.04.007 DOI
Kowarik I. (2008). On the role of alien species in urban flora and vegetation, in Urban Ecology, eds Marzluff J., Shulenberger E., Endlicher W., Alberti M., Bradley G., Ryan C., ZumBrunnen C., Simon U. (New York, NY: Springer; ), 321–338.
Laba M., Tsai F., Ogurcak D., Smith S., Richmond M. E. (2005). Field determination of optimal dates for the discrimination of invasive wetland plant species using derivative spectral analysis. Photogramm. Eng. Remote Sensing 71, 603–611. 10.14358/PERS.71.5.603 DOI
Laliberte A. S., Herrick J. E., Rango A., Winters C. (2010). Acquisition, orthorectification, and object-based classification of unmanned aerial vehicle (UAV) imagery for rangeland monitoring. Photogramm. Eng. Remote Sensing 76, 661–672. 10.14358/PERS.76.6.661 DOI
Laliberte A. S., Rango A. (2009). Texture and scale in object-based analysis of sub-decimeter resolution unmanned aerial vehicle (UAV) imagery. IEEE Trans. Geosci. Remote Sens. 47, 761–770. 10.1109/TGRS.2008.2009355 DOI
Maheu-Giroux M., de Blois S. (2004). Mapping the invasive species Phragmites australis in linear wetland corridors. Aquat. Bot. 83, 310–320. 10.1016/j.aquabot.2005.07.002 DOI
Masocha M., Skidmore A. K. (2011). Integrating conventional classifiers with a GIS expert system to increase the accuracy of invasive species mapping. Int. J. Appl. Earth Observ. Geoinform. 13, 487–494. 10.1016/j.jag.2010.10.004 DOI
McEwan R. W., Birchfield M. K., Schoergendorfer A., Arthur M. A. (2009). Leaf phenology and freeze tolerance of the invasive shrub Amur honeysuckle and potential native competitors. J. Torrey Bot. Soc. 136, 212–220. 10.3159/08-RA-109.1 DOI
Michez A., Piégay H., Jonathan L., Claessens H., Lejeune P. (2016). Mapping of riparian invasive species with supervised classification of Unmanned Aerial System (UAS) imagery. Int. J. Appl. Earth Observ. Geoinform. 44, 88–94. 10.1016/j.jag.2015.06.014 DOI
Müllerová J., Bartaloš T., Bråna J., Dvořák P., Vítková M. (2017). Unmanned aircraft in nature conservation – an example from plant invasions. Int. J. Remote Sens. 38, 2177–2198. 10.1080/01431161.2016.1275059 DOI
Müllerová J., Bråna J., Dvořák P., Bartaloš T., Vítková M. (2016). Does the data resolution/origin matter? Satellite, airborne and UAV imagery to tackle plant invasions. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLI-B7, 903–908. 10.5194/isprs-archives-XLI-B7-903-2016 DOI
Müllerová J., Pergl J., Pyšek P. (2013). Remote sensing as a tool for monitoring plant invasions: testing the effects of data resolution and image classification approach on the detection of a model plant species Heracleum mantegazzianum (giant hogweed). Int. J. Appl. Earth Observ. Geoinform. 25, 55–65. 10.1016/j.jag.2013.03.004 DOI
Müllerová J., Pyšek P., Jarošík V., Pergl J. (2005). Aerial photographs as a tool for assessing the regional dynamics of the invasive plant species Heracleum mantegazzianum. J. Appl. Ecol. 42, 1–12. 10.1111/j.1365-2664.2005.01092.x DOI
Otukei J. R., Blaschke T. (2010). Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. Int. J. Appl. Earth Observ. Geoinform. 12, S27–S31. 10.1016/j.jag.2009.11.002 DOI
Page N. A., Wall R. E., Darbyshire S. J., Mulligan G. A. (2006). The biology of invasive alien plants in Canada, 4. Heracleum mantegazzianum Sommier and Levier. Can. J. Plant Sci. 85, 569–589. 10.4141/P05-158 DOI
Pal M. (2005). Random forest classifier for remote sensing classification. Int. J. Remote Sens. 26, 217–222. 10.1080/01431160412331269698 DOI
Pergl J., Perglová I., Pyšek P., Dietz H. (2006). Population age structure and reproductive behaviour of the monocarpic perennial Heracleum mantegazzianum (Apiaceae) in its native and invaded distribution ranges. Am. J. Bot. 93, 1018–1028. 10.3732/ajb.93.7.1018 PubMed DOI
Pergl P., Müllerová J., Perglová I., Herben T., Pyšek P. (2011). The role of long-distance seed dispersal in the local population dynamics of an invasive plant species. Divers. Distrib. 17, 725–738. 10.1111/j.1472-4642.2011.00771.x DOI
Perglová I., Pergl J., Pyšek P. (2006). Flowering phenology and reproductive effort of the invasive alien plant Heracleum mantegazzianum. Preslia 78, 265–285.
Peterson E. B. (2005). Estimating cover of an invasive grass (Bromus tectorum) using tobit regression and phenology derived from two dates of Landsat ETM+ data. Int. J. Remote Sens. 26, 2491–2507. 10.1080/01431160500127815 DOI
Pyšek P. (1998). Alien and native species in Central European urban floras: a quantitative comparison. J. Biogeogr. 25, 155–163. 10.1046/j.1365-2699.1998.251177.x DOI
Pyšek P., Hulme P. E. (2005). Spatio-temporal dynamics of plant invasions: linking pattern to process. Ecoscience 12, 302–315. 10.2980/i1195-6860-12-3-302.1 DOI
Pyšek P., Richardson D. M. (2010). Invasive species, environmental change and management, and health. Annu. Rev. Environ. Resour. 35, 25–55. 10.1146/annurev-environ-033009-095548 DOI
Rango A., Laliberte A., Herrick J. E., Winters C., Havstad K., Steele C., et al. (2009). Unmanned aerial vehicle-based remote sensing for rangeland assessment, monitoring, and management. J. Appl. Remote Sens. 3:033542 10.1117/1.3216822 DOI
Resasco J., Hale A. N., Henry M. C., Gorchov D. L. (2007). Detecting an invasive shrub in a deciduous forest understory using late-fall Landsat sensor imagery. Int. J. Remote Sens. 28, 3739–3745. 10.1080/01431160701373721 DOI
Rocchini D., Andreo V., Förster M., Garzon-Lopez C. X., Gutierrez A. P., Gillespie T. W., et al. (2015). Potential of remote sensing to predict species invasions: a modelling perspective. Progr. Phys. Geogr. 39, 283–309. 10.1177/0309133315574659 DOI
Salamí E., Barrado C., Pastor E. (2014). UAV flight experiments applied to the remote sensing of vegetated areas. Remote Sens. 6, 11051–11081. 10.3390/rs61111051 DOI
Shouse M., Liang L., Fei S. (2013). Identification of understory invasive exotic plants with remote sensing in urban forests. Int. J. Appl. Earth Observ. Geoinform. 21, 525–534. 10.1016/j.jag.2012.07.010 DOI
Somers B., Asner G. P. (2013). Invasive species mapping in Hawaiian rainforests using multi-temporal Hyperion spaceborne imaging spectroscopy. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 6, 351–359. 10.1109/JSTARS.2012.2203796 DOI
Somodi I., Čarni A., Ribeiro D., Podobnikar T. (2012). Recognition of the invasive species Robinia pseudacacia from combined remote sensing and GIS sources. Biol. Conserv. 150, 59–67. 10.1016/j.biocon.2012.02.014 DOI
Ustin S. L., Santos M. J. (2010). Spectral identification of native and non-native plant species, in Proceedings of ASD and IEEEGRS; Art, Science and Applications of Reflectance Spectroscopy Symposium, Vol. II (Boulder, CO: ), 17.
Vapnik V. (1995). The Nature of Statistical Learning Theory. New York, NY: Springer-Verlag.
Vilà M., Basnou C., Pyšek P., Josefsson M., Genovesi P., Gollasch S., et al. (2010). How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Front. Ecol. Environ. 8, 135–144. 10.1890/080083 DOI
Watts A. C., Ambrosia V. G., Hinkley E. A. (2012). Unmanned aircraft systems in remote sensing and scientific research: classification and considerations of use. Remote Sens. 4, 1671–1692. 10.3390/rs4061671 DOI
Westoby M. J., Brasington J., Glasser N. F., Hambrey M. J., Reynolds J. M. (2012). Structure-from-motion photogrammetry: a lowcost, effective tool for geoscience applications. Geomorphology 179, 300–314. 10.1016/j.geomorph.2012.08.021 DOI
Whitehead K., Hugenholtz C. H. (2014). Remote sensing of the environment with small unmanned aircraft systems (UASs), part 1: a review of progress and challenges 1. J. Unmanned Veh. Syst. 2, 69–85. 10.1139/juvs-2014-0006 DOI
Wiens J., Sutter R., Anderson M., Blanchard J., Barnett A., Aguilar-Amuchastegui N., et al. (2009). Selecting and conserving lands for biodiversity: the role of remote sensing. Remote Sens. Environ. 113, 1370–1381. 10.1016/j.rse.2008.06.020 DOI
Wilfong B. N., Gorchov D. L., Henry M. C. (2009). Detecting an invasive shrub in deciduous forest understories using remote sensing. Weed Sci. 57, 512–520. 10.1614/WS-09-012.1 DOI
Willis K. S. (2015). Remote sensing change detection for ecological monitoring in United States protected areas. Biol. Conserv. 182, 233–242. 10.1016/j.biocon.2014.12.006 DOI
Wolkovich E. M., Cleland E. E. (2011). The phenology of plant invasions: a community ecology perspective. Front. Ecol. Environ. 9, 287–294. 10.1890/100033 DOI