Identification of Onosma visianii Roots Extract and Purified Shikonin Derivatives as Potential Acaricidal Agents against Tetranychus urticae
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28621748
PubMed Central
PMC6152756
DOI
10.3390/molecules22061002
PII: molecules22061002
Knihovny.cz E-zdroje
- Klíčová slova
- Onosma visianii, Tetranychus urticae, biopesticide, eco-friendly insecticide, shikonin derivatives,
- MeSH
- akaricidy chemie farmakologie MeSH
- Boraginaceae chemie MeSH
- kořeny rostlin chemie MeSH
- naftochinony chemie MeSH
- rostlinné extrakty chemie farmakologie MeSH
- Tetranychidae účinky léků MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- akaricidy MeSH
- naftochinony MeSH
- rostlinné extrakty MeSH
- shikonin MeSH Prohlížeč
There is an increasing need for the discovery of reliable and eco-friendly pesticides and natural plant-derived products may play a crucial role as source of new active compounds. In this research, a lipophilic extract of Onosma visianii roots extract containing 12% of shikonin derivatives demonstrated significant toxicity and inhibition of oviposition against Tetranychus urticae mites. Extensive chromatographic separation allowed the isolation of 11 naphthoquinone derivatives that were identified by spectral techniques and were tested against Tetranychus urticae. All the isolated compounds presented effects against the considered mite and isobutylshikonin (1) and isovalerylshikonin (2) were the most active, being valuable model compounds for the study of new anti-mite agents.
Crop Research Institute Drnovska 507 161 06 Prague 6 Czech Republic
School of Pharmacy University of Camerino Via Sant'Agostino 1 62032 Camerino Italy
Zobrazit více v PubMed
Naqqash M.N., Gökçe A., Bakhsh A., Salim M. Insecticide Resistance and its Molecular Basis in Urban Insect Pests. Parasitol. Res. 2016;115:1363–1373. doi: 10.1007/s00436-015-4898-9. PubMed DOI
Benelli G., Pavela R., Maggi F., Petrelli R., Nicoletti M. Commentary: Making Green Pesticides Greener? The Potential of Plant Products for Nanosynthesis and Pest Control. J. Clust. Sci. 2017;28:3–10. doi: 10.1007/s10876-016-1131-7. DOI
Pavela R. History, Presence and Perspective of using Plant Extracts as Commercial Botanical Insecticides and Farm Products for Protection Against Insects—A Review. Plant Prot. Sci. 2016;52:229–241.
Pavela R., Benelli G. Ethnobotanical Knowledge on Botanical Repellents Employed in the African Region against Mosquito Vectors—A Review. Exp. Parasitol. 2016;167:103–108. doi: 10.1016/j.exppara.2016.05.010. PubMed DOI
Pavela R., Benelli G. Essential Oils as Ecofriendly Biopesticides? Challenges and Constraints. Trends Plant Sci. 2016;21:1000–1007. doi: 10.1016/j.tplants.2016.10.005. PubMed DOI
Benelli G., Pavela R., Canale A., Nicoletti M., Petrelli R., Cappellacci L., Galassi R., Maggi F. Isofuranodiene and Germacrone from Smyrnium olusatrum Essential Oil as Acaricides and Oviposition Inhibitors Against Tetranychus urticae: Impact of Chemical Stabilization of Isofuranodiene by Interaction with Silver Triflate. J. Pest Sci. 2017;90:693–699. doi: 10.1007/s10340-016-0829-5. DOI
Zhang Z. Mites of Greenhouses: Identification, Biology and Control. CABI Publishing; Cambridge, UK: 2003.
Van Leeuwen T., Vontas J., Tsagkarakou A., Dermauw W., Tirry L. Acaricide Resistance Mechanisms in the Two-Spotted Spider Mite Tetranychus urticae and Other Important Acari: A Review. Insect Biochem. Mol. Biol. 2010;40:563–572. doi: 10.1016/j.ibmb.2010.05.008. PubMed DOI
Kwon D.H., Clark J.M., Lee S.H. Toxicodynamic Mechanisms and Monitoring of Acaricide Resistance in the Two-Spotted Spider Mite. Pestic. Biochem. Physiol. 2015;121:97–101. doi: 10.1016/j.pestbp.2014.12.011. PubMed DOI
Strid A., Tan K. Mountain Flora of Greece. Edinburgh University Press; Edinburgh, UK: 1991.
Tutin T.G. Flora Europea. Cambridge University Press; Cambridge, UK: 1964.
Tosun A., Akkol E.K., Bahadir O., Yesilada E. Evaluation of Anti-Inflammatory and Antinociceptive Activities of some Onosma L. Species Growing in Turkey. J. Ethnopharmacol. 2008;120:378–381. doi: 10.1016/j.jep.2008.09.007. PubMed DOI
Papageorgiou V.P., Assimopoulou A.N., Couladouros E.A., Hepworth D., Nicolaou K.C. The Chemistry and Biology of Alkannin, Shikonin, and Related Naphthazarin Natural Products. Angew. Chem. Int. Ed. 1999;38:270–300. doi: 10.1002/(SICI)1521-3773(19990201)38:3<270::AID-ANIE270>3.0.CO;2-0. PubMed DOI
Kumar N., Kumar R., Kishore K. Onosma L.: A Review of Phytochemistry and Ethnopharmacology. Pharmacogn. Rev. 2013;7:140–151. doi: 10.4103/0973-7847.120513. PubMed DOI PMC
Dong M., Liu D., Li Y., Chen X., Luo K., Zhang Y., Li R. Naphthoquinones from Onosma paniculatum with Potential Anti-Inflammatory Activity. Planta Med. 2017;83:631–635. doi: 10.1055/s-0043-100122. PubMed DOI
Nikita G., Vivek P., Chhaya G. Wound-Healing Activity of an Oligomer of alkannin/shikonin, Isolated from Root Bark of Onosma echioides. Nat. Prod. Res. 2015;29:1584–1588. doi: 10.1080/14786419.2014.986126. PubMed DOI
Vukic M.D., Vukovic N.L., Djelic G.T., Popovic S.L., Zaric M.M., Baskic D.D., Krstic G.B., Tesevic V.V., Kacaniova M.M. Antibacterial and Cytotoxic Activities of Naphthoquinone Pigments from Onosma visianii Clem. EXCLI J. 2017;16:73–88. PubMed PMC
Babula P., Adam V., Kizek R., Sladký Z., Havel L. Naphthoquinones as Allelochemical Triggers of Programmed Cell Death. Environ. Exp. Bot. 2009;65:330–337. doi: 10.1016/j.envexpbot.2008.11.007. DOI
Akhtar Y., Isman M.B., Niehaus L.A., Lee C., Lee H. Antifeedant and Toxic Effects of Naturally Occurring and Synthetic Quinones to the Cabbage Looper, Trichoplusia ni. Crop Prot. 2012;31:8–14. doi: 10.1016/j.cropro.2011.09.009. DOI
Babula P., Adam V., Havel L., Kizek R. Noteworthy Secondary Metabolites Naphthoquinones—Their Occurrence, Pharmacological Properties and Analysis. Curr. Pharm. Anal. 2009;5:47–68. doi: 10.2174/157341209787314936. DOI
Lubbe A., Verpoorte R. Cultivation of Medicinal and Aromatic Plants for Specialty Industrial Materials. Ind. Crops Prod. 2011;34:785–801. doi: 10.1016/j.indcrop.2011.01.019. DOI
Malik S., Bhushan S., Sharma M., Ahuja P.S. Biotechnological Approaches to the Production of Shikonins: A Critical Review with Recent Updates. Crit. Rev. Biotechnol. 2016;36:327–340. doi: 10.3109/07388551.2014.961003. PubMed DOI
Lee C., Lee H. Acaricidal Activity and Function of Mite Indicator using Plumbagin and its Derivatives Isolated from Diospyros kaki Thunb. Roots (Ebenaceae) J. Microbiol. Biotechnol. 2008;18:314–321. PubMed
Akhtar Y., Isman M.B., Lee C.-H., Lee S.-G., Lee H.-S. Toxicity of Quinones against Two-Spotted Spider Mite and Three Species of Aphids in Laboratory and Greenhouse Conditions. Ind. Crops Prod. 2012;37:536–541. doi: 10.1016/j.indcrop.2011.07.033. DOI
Tokunaga T., Dohmura A., Takada N., Ueda M. Cytotoxic Antifeedant from Dionaea muscipula Ellis: A Defensive Mechanism of Carnivorous Plants against Predators. Bull. Chem. Soc. Jpn. 2004;77:537–541. doi: 10.1246/bcsj.77.537. DOI
Khambay B.P.S., Batty D., Jewess P.J., Bateman G.L., Hollomon D.W. Mode of Action and Pesticidal Activity of the Natural Product Dunnione and of some Analogues. Pest Manag. Sci. 2003;59:174–182. doi: 10.1002/ps.632. PubMed DOI
Hari Babu T., Rama Subba Rao V., Tiwari A.K., Suresh Babu K., Srinivas P.V., Ali A.Z., Madhusudana Rao J. Synthesis and Biological Evaluation of Novel 8-Aminomethylated Oroxylin A Analogues as α-Glucosidase Inhibitors. Bioorg. Med. Chem. Lett. 2008;18:1659–1662. doi: 10.1016/j.bmcl.2008.01.055. PubMed DOI
Cespedes C.L., Lina-Garcia L., Kubo I., Salazar J.R., Ariza-Castolo A., Alarcon J., Aqueveque P., Werner E., Seigler D.S. Calceolaria Integrifolia s.l. Complex, Reduces Feeding and Growth of Acanthoscelides Obtectus, and Epilachna varivestis. A New Source of Bioactive Compounds against Dry Bean Pests. Ind. Crops Prod. 2016;89:257–267. doi: 10.1016/j.indcrop.2016.05.026. DOI
Michaelakis A., Strongilos A.T., Bouzas E.A., Koliopoulos G., Couladouros E.A. Larvicidal Activity of Naturally Occurring Naphthoquinones and Derivatives against the West Nile Virus Vector Culex pipiens. Parasitol. Res. 2009;104:657–662. doi: 10.1007/s00436-008-1242-7. PubMed DOI
Khambay B.P.S., Batty D., Beddie D.G., Denholm I., Cahill M.R. A New Group of Plant-Derived Naphthoquinone Pesticides. Pestic. Sci. 1997;50:291–296. doi: 10.1002/(SICI)1096-9063(199708)50:4<291::AID-PS604>3.0.CO;2-8. DOI
Pavela R. Efficacy of Naphthoquinones as Insecticides against the House Fly, Musca domestica L. Ind. Crops Prod. 2013;43:745–750. doi: 10.1016/j.indcrop.2012.08.025. DOI
Wakasa F., Watanabe S. Kanemite (Acequinocyl, AKD-2023)—A New Acaricide for Control of various Species of Mites. Agrochem. Jpn. 2000:17–20.
Dekeyser M.A. Acaricide Mode of Action. Pest Manag. Sci. 2005;61:103–110. doi: 10.1002/ps.994. PubMed DOI
Meazza G., Dayan F.E., Wedge D.E. Activity of Quinones on Colletotrichum Species. J. Agric. Food Chem. 2003;51:3824–3828. doi: 10.1021/jf0343229. PubMed DOI
Vennerstrom J.L., Eaton J.W. Oxidants, Oxidant Drugs, and Malaria. J. Med. Chem. 1988;31:1269–1277. doi: 10.1021/jm00402a001. PubMed DOI
Ferraz P.A.L., De Abreu F.C., Pinto A.V., Glezer V., Tonholo J., Goulart M.O.F. Electrochemical Aspects of the Reduction of Biologically Active 2-Hydroxy-3-Alkyl-1,4-Naphthoquinones. J. Electroanal. Chem. 2001;507:275–286. doi: 10.1016/S0022-0728(01)00439-9. DOI
Monks T.J., Hanzlik R.P., Cohen G.M., Ross D., Graham D.G. Quinone Chemistry and Toxicity. Toxicol. Appl. Pharmacol. 1992;112:2–16. doi: 10.1016/0041-008X(92)90273-U. PubMed DOI
Koura Y., Kinoshita S., Takasuka K., Koura S., Osaki N., Matsumoto S., Miyoshi H. Respiratory Inhibition of Acaricide AKD-2023 and its Deacetyl Metabolite. J. Pestic. Sci. 1998;23:18–21. doi: 10.1584/jpestics.23.18. DOI
Nauen R., Bretschneider T. New Modes of Action of Insecticides. Pestic. Outlook. 2002;13:241–245. doi: 10.1039/b211171n. DOI
Comai S., Dall’Acqua S., Grillo A., Castagliuolo I., Gurung K., Innocenti G. Essential Oil of Lindera neesiana Fruit: Chemical Analysis and its Potential use in Topical Applications. Fitoterapia. 2010;81:11–16. doi: 10.1016/j.fitote.2009.06.017. PubMed DOI
Chaouche T., Haddouchi F., Bekkara F.A. Identification of Shikonin from the Roots of Echium Pycnanthum Pomel. Asian J. Pharm. Clin. Res. 2012;5:30–32.
Ito Y., Onobori K., Yamazaki T., Kawamura Y. Tigloylshikonin, a New Minor Shikonin Derivative, from the Roots and the Commercial Root Extract of Lithospermum Erythrorhizon. Chem. Pharm. Bull. 2011;59:117–119. doi: 10.1248/cpb.59.117. PubMed DOI
Kim J.Y., Jeong H.J., Park J.Y., Kim Y.M., Park S.J., Cho J.K., Park K.H., Ryu Y.B., Lee W.S. Selective and Slow-Binding Inhibition of Shikonin Derivatives Isolated from Lithospermum Erythrorhizon on Glycosyl Hydrolase 33 and 34 Sialidases. Bioorg. Med. Chem. 2012;20:1740–1748. doi: 10.1016/j.bmc.2012.01.011. PubMed DOI
Spyros A., Assimopoulou A.N., Papageorgiou V.P. Structure Determination of Oligomeric Alkannin and Shikonin Derivatives. Biomed. Chromatogr. 2005;19:498–505. doi: 10.1002/bmc.470. PubMed DOI
Pavela R. Acaricidal Properties of Extracts and Major Furanochromenes from the Seeds of Ammi visnaga Linn. against Tetranychus urticae Koch. Ind. Crops Prod. 2015;67:108–113. doi: 10.1016/j.indcrop.2015.01.011. DOI
Abbott W.S. A Method of Computing the Effectiveness of an Insecticide. 1925. J. Am. Mosq. Control Assoc. 1987;3:302–303. PubMed
Finney D. Probit Analysis. Cambridge University Press; London, UK: 1971.