High Throughput Screening Method for Identifying Potential Agonists and Antagonists of Arabidopsis thaliana Cytokinin Receptor CRE1/AHK4

. 2017 ; 8 () : 947. [epub] 20170608

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28642766

The CRE1/AHK4 cytokinin receptor is an important component of plants' hormone signaling systems, and compounds that can alter its activity have potential utility for studying the receptor's functions and/or developing new plant growth regulators. A high throughput method was developed for screening compounds with agonist or antagonist properties toward the CRE1/AHK4 cytokinin receptor in a single experiment using the Nanodrop II liquid handling system and 384-well plates. Potential ligands are screened directly, using a reporter system in which receptor signaling activity triggers expression of β-galactosidase in Escherichia coli. This enzyme generates a fluorescent product from a non-fluorescent substrate, allowing the agonistic/antagonistic behavior of tested compounds to be assayed in relation to that of an internal standard (here the natural ligand, trans-zeatin). The method includes a robust control procedure to determine false positive or false negative effects of the tested compounds arising from their fluorescent or fluorescent-quenching properties. The presented method enables robust, automated screening of large libraries of compounds for ability to activate or inhibit the Arabidopsis thaliana cytokinin receptor CRE1/AHK4.

Zobrazit více v PubMed

Abdi H. (2007). “Bonferroni and Šidák corrections for multiple comparisons,” in Encyclopedia of Measurement and Statistics ed. Salkind N. J. (Thousand Oaks, CA: Sage; ) 103–107.

Arata Y., Nagasawa-Iida A., Uneme H., Nakajima H., Kakimoto T., Sato R. (2010). The phenylquinazoline compound S-4893 is a non-competitive cytokinin antagonist that targets Arabidopsis cytokinin receptor CRE1 and promotes root growth in Arabidopsis and rice. Plant Cell Physiol. 51 2047–2059. 10.1093/pcp/pcq163 PubMed DOI

Basra S. M. A., Lovatt C. J. (2016). Exogenous applications of moringa leaf extract and cytokinins improve plant growth, yield, and fruit quality of cherry tomato. HortTechnology 26 327–337.

Doležal K., Popa I., Kryštof V., Spíchal L., Fojtíková M., Holub J., et al. (2006). Preparation and biological activity of 6-benzylaminopurine derivatives in plants and human cancer cells. Bioorg. Med. Chem. 14 875–884. 10.1016/j.bmc.2005.09.004 PubMed DOI

Duetz W. A., Rüedy L., Hermann R., O’Connor K., Büchs J., Withold A. (2000). Methods for intense aeration, growth, storage, and replication of bacterial strains in microtiter plates. Appl. Environ. Microbiol. 66 2641–2646. 10.1128/AEM.66.6.2641-2646.2000 PubMed DOI PMC

Gallová L., Barreiro Z. G., Bazgier V., Berka K., Mazura P., Spíchal L., et al. (2016). Arabidopsis histidine kinase 4 cytokinin receptor – the object of interest in ligand-receptor study. New Biotechnol. 33 S165. 10.1016/j.nbt.2016.06.1292 DOI

Koprna R., De Diego N., Dundálková L., Spíchal L. (2016). Use of cytokinins as agrochemicals. Bioorg. Med. Chem. 24 484–492. 10.1016/j.bmc.2015.12.022 PubMed DOI

Mizuno T., Yamashino T. (2010). Biochemical characterization of plant hormone cytokinin-receptor histidine kinases using microorganisms. Methods Enzymol. 471 335–356. 10.1016/S0076-6879(10)71018-1 PubMed DOI

Richter M., Schumann L., Walther E., Hoffmann A., Braun H., Grienke U., et al. (2015). Complementary assays helping to overcome challenges for identifying neuraminidase inhibitors. Future Virol. 10 77–88. 10.2217/fvl.14.97 DOI

Rodriguez-Furlán C., Miranda G., Reggiardo M., Hicks G. R., Norambuena L. (2016). High throughput selection of novel plant growth regulators: assessing the translatability of small bioactive molecules from Arabidopsis to crops. Plant Sci. 245 50–60. 10.1016/j.plantsci.2016.01.001 PubMed DOI

Romanov G. A., Spíchal L., Lomin S. N., Strnad M., Schmülling T. (2005). A live cell hormone-binding assay on transgenic bacteria expressing a eukaryotic receptor protein. Anal. Biochem. 347 129–134. 10.1016/j.ab.2005.09.012 PubMed DOI

Šidák Z. (1967). Rectangular confidence regions for the means of multivariate normal distributions. J. Am. Stat. Assoc. 62 626–633. 10.1080/01621459.1967.10482935 DOI

Spíchal L. (2011). Bacterial assay to study plant sensor histidine kinases. Methods Mol. Biol. 779 139–147. 10.1007/978-1-61779-264-9_7 PubMed DOI

Spíchal L., Kryštof V., Paprskárová M., Lenobel R., Styskala J., Binarová P., et al. (2007). Classical anticytokinins do not interact with cytokinin receptors but inhibit cyclin-dependent kinases. J. Biol. Chem. 282 14356–14363. 10.1074/jbc.M609750200 PubMed DOI

Spíchal L., Rakova N. Y., Riefler M., Mizuno T., Romanov G. A., Strnad M., et al. (2004). Two Cytokinin Receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol. 45 1299–1305. 10.1093/pcp/pch132 PubMed DOI

Studier F. W. (2005). Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif. 41 207–234. 10.1016/j.pep.2005.01.016 PubMed DOI

Suzuki T., Miwa K., Ishikawa K., Yamada H., Aiba H., Mizuno T. (2001). The Arabidopsis sensor His-kinase, AHK4, can respond to cytokinins. Plant Cell Physiol. 42 107–113. 10.1093/pcp/pce037 PubMed DOI

Takeda S., Fujisawa Y., Matsubara M., Aiba H., Mizuno T. (2001). A novel feature of the multistep phosphorelay in Escherichia coli: a revised model of the RcsC → YojN → RcsB signalling pathway implicated in capsular synthesis and swarming behaviour. Mol. Microbiol. 40 440–450. 10.1046/j.1365-2958.2001.02393.x PubMed DOI

Ueguchi C., Sato S., Kato T., Tabata S. (2001). The AHK4 gene involved in the cytokinin-signaling pathway as a direct receptor molecule in Arabidopsis thaliana. Plant Cell Physiol. 42 751–755. 10.1093/pcp/pce094 PubMed DOI

Yamada H., Suzuki T., Terada K., Takei K., Ishikawa K., Miwa K., et al. (2001). The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol. 42 1017–1023. 10.1093/pcp/pce127 PubMed DOI

Żamojć K., Wiczk W., Zaborowski B., Jacewicz D., Chmurzyński L. (2015). Fluorescence quenching of 7-amino-4-methylcoumarin by different TEMPO derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc. 136 1875–1880. 10.1016/j.saa.2014.10.102 PubMed DOI

Zhang J. H., Chung T. D. Y., Oldenburg K. R. (1999). A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4 67–73. 10.1177/108705719900400206 PubMed DOI

Zhao H. (2003). “A pH-indicator-based screen for hydrolytic haloalkane dehalogenase,” in Directed Enzyme Evolution eds Arnold F. H., Georgiou G. (Totowa, NJ: Humana Press; ) 213–222. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...