An activating mutation of GNB1 is associated with resistance to tyrosine kinase inhibitors in ETV6-ABL1-positive leukemia

. 2017 Oct 26 ; 36 (43) : 5985-5994. [epub] 20170626

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28650474

Leukemias harboring the ETV6-ABL1 fusion represent a rare subset of hematological malignancies with unfavorable outcomes. The constitutively active chimeric Etv6-Abl1 tyrosine kinase can be specifically inhibited by tyrosine kinase inhibitors (TKIs). Although TKIs represent an important therapeutic tool, so far, the mechanism underlying the potential TKI resistance in ETV6-ABL1-positive malignancies has not been studied in detail. To address this issue, we established a TKI-resistant ETV6-ABL1-positive leukemic cell line through long-term exposure to imatinib. ETV6-ABL1-dependent mechanisms (including fusion gene/protein mutation, amplification, enhanced expression or phosphorylation) and increased TKI efflux were excluded as potential causes of resistance. We showed that TKI effectively inhibited the Etv6-Abl1 kinase activity in resistant cells, and using short hairpin RNA (shRNA)-mediated silencing, we confirmed that the resistant cells became independent from the ETV6-ABL1 oncogene. Through analysis of the genomic and proteomic profiles of resistant cells, we identified an acquired mutation in the GNB1 gene, K89M, as the most likely cause of the resistance. We showed that cells harboring mutated GNB1 were capable of restoring signaling through the phosphoinositide-3-kinase (PI3K)/Akt/mTOR and mitogen-activated protein kinase (MAPK) pathways, whose activation is inhibited by TKI. This alternative GNB1K89M-mediated pro-survival signaling rendered ETV6-ABL1-positive leukemic cells resistant to TKI therapy. The mechanism of TKI resistance is independent of the targeted chimeric kinase and thus is potentially relevant not only to ETV6-ABL1-positive leukemias but also to a wider spectrum of malignancies treated by kinase inhibitors.

Zobrazit více v PubMed

Zaliova M, Moorman AV, Cazzaniga G, Stanulla M, Harvey RC, Roberts KG et al. Characterization of leukemias with ETV6-ABL1 fusion. Haematologica 2016; 101: 1082–1093. PubMed PMC

Golub TR, Goga A, Barker GF, Afar DE, McLaughlin J, Bohlander SK et al. Oligomerization of the ABL tyrosine kinase by the Ets protein TEL in human leukemia. Mol Cell Biol 1996; 16: 4107–4116. PubMed PMC

Okuda K, Golub TR, Gilliland DG, Griffin JD. p210BCR/ABL, p190BCR/ABL, and TEL/ABL activate similar signal transduction pathways in hematopoietic cell lines. Oncogene 1996; 13: 1147–1152. PubMed

Hannemann JR, McManus DM, Kabarowski JH, Wiedemann LM. Haemopoietic transformation by the TEL/ABL oncogene. Br J Haematol 1998; 102: 475–485. PubMed

Voss J, Posern G, Hannemann JR, Wiedemann LM, Turhan AG, Poirel H et al. The leukaemic oncoproteins Bcr-Abl and Tel-Abl (ETV6/Abl) have altered substrate preferences and activate similar intracellular signalling pathways. Oncogene 2000; 19: 1684–1690. PubMed

Santos SC, Lacronique V, Bouchaert I, Monni R, Bernard O, Gisselbrecht S et al. Constitutively active STAT5 variants induce growth and survival of hematopoietic cells through a PI 3-kinase/Akt dependent pathway. Oncogene 2001; 20: 2080–2090. PubMed

Malinge S, Monni R, Bernard O, Penard-Lacronique V. Activation of the NF-kappaB pathway by the leukemogenic TEL-Jak2 and TEL-Abl fusion proteins leads to the accumulation of antiapoptotic IAP proteins and involves IKKalpha. Oncogene 2006; 25: 3589–3597. PubMed

Carroll M, Ohno-Jones S, Tamura S, Buchdunger E, Zimmermann J, Lydon NB et al. CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins. Blood 1997; 90: 4947–4952. PubMed

Okuda K, Weisberg E, Gilliland DG, Griffin JD. ARG tyrosine kinase activity is inhibited by STI571. Blood 2001; 97: 2440–2448. PubMed

Bernt KM, Hunger SP. Current concepts in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia. Front Oncol 2014; 4: 54. PubMed PMC

Eide CA, O'Hare T. Chronic myeloid leukemia: advances in understanding disease biology and mechanisms of resistance to tyrosine kinase inhibitors. Curr Hematol Malig Rep 2015; 10: 158–166. PubMed PMC

Gambacorti-Passerini C, Aroldi A, Cordani N, Piazza R. Chronic myeloid leukemia: second-line drugs of choice. Am J Hematol 2016; 91: 67–75. PubMed

Barbouti A, Ahlgren T, Johansson B, Hoglund M, Lassen C, Turesson I et al. Clinical and genetic studies of ETV6/ABL1-positive chronic myeloid leukaemia in blast crisis treated with imatinib mesylate. Br J Haematol 2003; 122: 85–93. PubMed

Gancheva K, Virchis A, Howard-Reeves J, Cross NC, Brazma D, Grace C et al. Myeloproliferative neoplasm with ETV6-ABL1 fusion: a case report and literature review. Mol Cytogenet 2013; 6: 39. PubMed PMC

Kawamata N, Dashti A, Lu D, Miller B, Koeffler HP, Schreck R et al. Chronic phase of ETV6-ABL1 positive CML responds to imatinib. Genes Chromosomes Cancer 2008; 47: 919–921. PubMed

Kelly JC, Shahbazi N, Scheerle J, Jahn J, Suchen S, Christacos NC et al. Insertion (12;9)(p13;q34q34): a cryptic rearrangement involving ABL1/ETV6 fusion in a patient with Philadelphia-negative chronic myeloid leukemia. Cancer Genet Cytogenet 2009; 192: 36–39. PubMed

Malone A, Langabeer S, O'Marcaigh A, Storey L, Bacon CL, Smith OP. A doctor(s) dilemma: ETV6-ABL1 positive acute lymphoblastic leukaemia. Br J Haematol 2010; 151: 101–102. PubMed

Mozziconacci MJ, Sainty D, Chabannon C. A fifteen-year cytogenetic remission following interferon treatment in a patient with an indolent ETV6-ABL positive myeloproliferative syndrome. Am J Hematol 2007; 82: 688–689. PubMed

Nand R, Bryke C, Kroft SH, Divgi A, Bredeson C, Atallah E. Myeloproliferative disorder with eosinophilia and ETV6-ABL gene rearrangement: efficacy of second-generation tyrosine kinase inhibitors. Leuk Res 2009; 33: 1144–1146. PubMed

O'Brien SG, Vieira SA, Connors S, Bown N, Chang J, Capdeville R et al. Transient response to imatinib mesylate (STI571) in a patient with the ETV6-ABL t(9;12) translocation. Blood 2002; 99: 3465–3467. PubMed

Perna F, Abdel-Wahab O, Levine RL, Jhanwar SC, Imada K, Nimer SD. ETV6-ABL1-positive ‘chronic myeloid leukemia’: clinical and molecular response to tyrosine kinase inhibition. Haematologica 2011; 96: 342–343. PubMed PMC

Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang YL, Pei D et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med 2014; 371: 1005–1015. PubMed PMC

Tirado CA, Sebastian S, Moore JO, Gong JZ, Goodman BK. Molecular and cytogenetic characterization of a novel rearrangement involving chromosomes 9, 12, and 17 resulting in ETV6 (TEL) and ABL fusion. Cancer Genet Cytogenet 2005; 157: 74–77. PubMed

Yamamoto K, Yakushijin K, Nakamachi Y, Miyata Y, Sanada Y, Tanaka Y et al. Extramedullary T-lymphoid blast crisis of an ETV6/ABL1-positive myeloproliferative neoplasm with t(9;12)(q34;p13) and t(7;14)(p13;q11.2). Ann Hematol 2014; 93: 1435–1438. PubMed

Yeung DT, Moulton DJ, Heatley SL, Nievergall E, Dang P, Braley J et al. Relapse of BCR-ABL1-like ALL mediated by the ABL1 kinase domain mutation T315I following initial response to dasatinib treatment. Leukemia 2015; 29: 230–232. PubMed

Zuna J, Zaliova M, Muzikova K, Meyer C, Lizcova L, Zemanova Z et al. Acute leukemias with ETV6/ABL1 (TEL/ABL) fusion: poor prognosis and prenatal origin. Genes Chromosomes Cancer 2010; 49: 873–884. PubMed

Picard S, Titier K, Etienne G, Teilhet E, Ducint D, Bernard MA et al. Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood 2007; 109: 3496–3499. PubMed

Yoda A, Adelmant G, Tamburini J, Chapuy B, Shindoh N, Yoda Y et al. Mutations in G protein beta subunits promote transformation and kinase inhibitor resistance. Nat Med 2015; 21: 71–75. PubMed PMC

Jones D, Thomas D, Yin CC, O'Brien S, Cortes JE, Jabbour E et al. Kinase domain point mutations in Philadelphia chromosome-positive acute lymphoblastic leukemia emerge after therapy with BCR-ABL kinase inhibitors. Cancer 2008; 113: 985–994. PubMed PMC

Asari K, Heatley SL, Sadras T, Leclercq TM, Fitter S, Kok CH et al. In Vitro modeling of Ph-like ALL fusions identifies novel kinase-domain mutations as mode of TKI-resistance—implications for targeted therapy. Blood 2016; 128: 3957.

Liu YF, Wang BY, Zhang WN, Huang JY, Li BS, Zhang M et al. Genomic profiling of adult and pediatric B-cell acute lymphoblastic leukemia. EBioMedicine 2016; 8: 173–183. PubMed PMC

Baeumler J, Szuhai K, Falkenburg JH, van Schie ML, Ottmann OG, Nijmeijer BA. Establishment and cytogenetic characterization of a human acute lymphoblastic leukemia cell line (ALL-VG) with ETV6/ABL1 rearrangement. Cancer Genet Cytogenet 2008; 185: 37–42. PubMed

Kotrova M, Musilova A, Stuchly J, Fiser K, Starkova J, Mejstrikova E et al. Distinct bilineal leukemia immunophenotypes are not genetically determined. Blood 2016; 128: 2263–2266. PubMed

Okonechnikov K, Conesa A, Garcia-Alcalde F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 2016; 32: 292–294. PubMed PMC

Pospisilova J, Vit O, Lorkova L, Klanova M, Zivny J, Klener P et al. Resistance to TRAIL in mantle cell lymphoma cells is associated with the decreased expression of purine metabolism enzymes. Int J Mol Med 2013; 31: 1273–1279. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...