Sensory processes modulate differences in multi-component behavior and cognitive control between childhood and adulthood
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
28660637
PubMed Central
PMC6867046
DOI
10.1002/hbm.23705
Knihovny.cz E-zdroje
- Klíčová slova
- EEG, children, multicomponent behavior, sensory integration, source localization,
- MeSH
- dětská psychologie MeSH
- dítě MeSH
- dospělí MeSH
- elektroencefalografie MeSH
- evokované potenciály fyziologie MeSH
- exekutivní funkce fyziologie MeSH
- lidé MeSH
- mladý dospělý MeSH
- mozek růst a vývoj fyziologie MeSH
- neuropsychologické testy MeSH
- průřezové studie MeSH
- reakční čas MeSH
- sluchová percepce fyziologie MeSH
- stárnutí fyziologie psychologie MeSH
- vývoj dítěte MeSH
- zraková percepce fyziologie MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Many everyday tasks require executive functions to achieve a certain goal. Quite often, this requires the integration of information derived from different sensory modalities. Children are less likely to integrate information from different modalities and, at the same time, also do not command fully developed executive functions, as compared to adults. Yet still, the role of developmental age-related effects on multisensory integration processes has not been examined within the context of multicomponent behavior until now (i.e., the concatenation of different executive subprocesses). This is problematic because differences in multisensory integration might actually explain a significant amount of the developmental effects that have traditionally been attributed to changes in executive functioning. In a system, neurophysiological approach combining electroencephaloram (EEG) recordings and source localization analyses, we therefore examined this question. The results show that differences in how children and adults accomplish multicomponent behavior do not solely depend on developmental differences in executive functioning. Instead, the observed developmental differences in response selection processes (reflected by the P3 ERP) were largely dependent on the complexity of integrating temporally separated stimuli from different modalities. This effect was related to activation differences in medial frontal and inferior parietal cortices. Primary perceptual gating or attentional selection processes (P1 and N1 ERPs) were not affected. The results show that differences in multisensory integration explain parts of transformations in cognitive processes between childhood and adulthood that have traditionally been attributed to changes in executive functioning, especially when these require the integration of multiple modalities during response selection. Hum Brain Mapp 38:4933-4945, 2017. © 2017 Wiley Periodicals, Inc.
Zobrazit více v PubMed
Bayle A, Chavelier N (2011): The role of goal representation in preschoolers' flexibility and inhibition. J Exp Child Psychol 108:469–483. PubMed
Beste C, Saft C (2015): Action selection in a possible model of striatal medium spiny neuron dysfunction: Behavioral and EEG data in a patient with benign hereditary chorea. Brain Struct Funct 220:221–228. PubMed
Beste C, Mückschel M, Elben S, J Hartmann C, C McIntyre C, Saft C, Vesper J, Schnitzler A, Wojtecki L (2015): Behavioral and neurophysiological evidence for the enhancement of cognitive control under dorsal pallidal deep brain stimulation in Huntington's disease. Brain Struct Funct 220:2441–2448. PubMed
Bizley JK, Jones GP, Town SM (2016): Where are multisensory signals combined for perceptual decisionmaking? Curr Opin Neurobiol 40:31–37. PubMed
Brisson B, Robitaille N, Jolicoeur P (2007): Stimulus intensity affects the latency but not the amplitude of the N2pc. Neuroreport 18:1627–1630. PubMed
Buzzell G, Chubb L, Safford AS, Thompson JC, McDonald CG (2013): Speed of human biological form and motion processing. PloS One 8:e69396. PubMed PMC
Chavelier N (2015): Executive function development: Making sense of the environment to behave adaptively. Curr Dir Psychol Sci 24:363–368.
Chavelier N, Bayle A (2009): Setting goals to switch between tasks: Effect of cue transparency on children's cognitive flexibility. Dev Psychol 45:782–797. PubMed
Chavelier N, Chatham CH, Munakata Y (2014): The practice of going helps children to stop: The importance of context monitoring in inhibitory control. Dev Psychol 46:959–965. PubMed PMC
Chavelier N, Wiebe SA, Huber KI, Espy KA (2011): Switch detection in preschooler's cognitive flexibility. J Exp Child Psychol 109:353–370. PubMed PMC
Chersi F, Ferrari PF, Fogassi L (2011): Neuronal chains for actions in the parietal lobe: A computational model. PloS One 6:e27652. PubMed PMC
Collette F, Olivier L, Van der Linden M, Laureys S, Delfiore G, Luxen A, Salmon E (2005): Involvement of both prefrontal and inferior parietal cortex in dual‐task performance. Brain Res Cogn Brain Res 24:237–251. PubMed
Conrey B, Pisoni DB (2006): Auditory‐visual speech perception and synchrony detection for speech and nonspeech signals. J Acoust Soc Am 119:4065–4073. PubMed PMC
Diamond A (2013): Executive functions. Annu Rev Psychol 64:135–168. PubMed PMC
Diederich A, Colonius H (2009): Crossmodal interaction in speeded responses: Time window of integration model. Prog Brain Res 174:119–135. PubMed
Dippel G, Beste C (2015): A causal role of the right inferior frontal cortex in implementing strategies for multi‐component behaviour. Nat Commun 6:6587. PubMed
Duncan J (2010): The multiple‐demand (MD) system of the primate brain: Mental programs for intelligent behaviour. Trends Cogn Sci 14:172–179. PubMed
Fair DA, Cohen AL, Power JD, Dosenbach NUF, Church JA, Miezin FM, Schlaggar BL, Petersen SE (2009): Functional brain networks develop from a “local to distributed” organization. PLoS Comput Biol 5:e1000381. PubMed PMC
Giorgio A, Santelli L, Tomassini V, Bosnell R, Smith S, De Stefano N, Johansen‐Berg H (2010): Age‐related changes in grey and white matter structure throughout adulthood. NeuroImage 51:943–951. PubMed PMC
Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, Nugent TF, Herman DH, Clasen LS, Toga AW, Rapoport JL, Thompson PM (2004): Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci U S A 101:8174–8179. PubMed PMC
Gohil K, Stock A‐K, Beste C (2015): The importance of sensory integration processes for action cascading. Sci Rep 5:9485. PubMed PMC
Gohil K, Dippel G, Beste C (2016): Questioning the role of the frontopolar cortex in multi‐component behavior–a TMS/EEG study. Sci Rep 6:22317. PubMed PMC
Gori M, Del Viva M, Sandini G, Burr DC (2008): Young children do not integrate visual and haptic form information. Curr Biol CB 18:694–698. PubMed
Hahn N, Foxe JJ, Molholm S (2014): Impairments of multisensory integration and cross‐sensory learning as pathways to dyslexia. Neurosci Biobehav Rev 47:384–392. PubMed PMC
Hämmerer D, Müller V, Li S‐C (2014): Performance monitoring across the lifespan: Still maturing postconflict regulation in children and declining task‐set monitoring in older adults. Neurosci Biobehav Rev 46:105–123. PubMed
Hanson JVM, Whitaker D, Heron J (2009): Preferential processing of tactile events under conditions of divided attention. Neuroreport 20:1392–1396. PubMed PMC
Hillock‐Dunn A, Grantham DW, Wallace MT (2016): The temporal binding window for audiovisual speech: Children are like little adults. Neuropsychologia 88:74–82. PubMed
Hopf J‐M, Vogel E, Woodman G, Heinze H‐J, Luck SJ (2002): Localizing visual discrimination processes in time and space. J Neurophysiol 88:2088–2095. PubMed
Ionta S, Heydrich L, Lenggenhager B, Mouthon M, Fornari E, Chapuis D, Gassert R, Blanke O (2011): Multisensory mechanisms in temporo‐parietal cortex support self‐location and first‐person perspective. Neuron 70:363–374. PubMed
Jakobs O, Langner R, Caspers S, Roski C, Cieslik EC, Zilles K, Laird AR, Fox PT, Eickhoff SB (2012): A cross study and within‐subject functional connectivity of a right temporo‐parietal junction subregion involved in stimulus‐context integration. NeuroImage 60:2389–2398. PubMed PMC
Karch S, Feuerecker R, Leicht G, Meindl T, Hantschk I, Kirsch V, Ertl M, Lutz J, Pogarell O, Mulert C (2010): Separating distinct aspects of the voluntary selection between response alternatives: N2‐ and P3‐related BOLD responses. NeuroImage 51:356–364. PubMed
Kayser C, Shams L, Stein B, Rohe T, Noppeney U, Angelaki D, Gu Y, DeAngelis G, Ernst M, Bulthoff H, Shams L, Beierholm U, Wallace M, Roberson G, Hairston W, Stein B, Vaughan J, Roach N, Heron J, McGraw P, Hatfield G, Shams L, Ma W, Beierholm U, Shams L, Beierholm U, Trommershauser J, Kording K, Landy M, Kersten D, Mamassian P, Yuille A, Ernst M, Ernst M, Banks M, Ma W, Rahmati M, Pouget A, Deneve S, Duhamel J, Fetsch C, DeAngelis G, Angelaki D, Kording K, Beierholm U, Ma W, Quartz S, Tenenbaum J, Beierholm U, Quartz S, Shams L, Wozny D, Beierholm U, Shams L, Haxby J, Connolly A, Guntupalli J, Kayser C, Logothetis N, Panzeri S, Schroeder C, Lakatos P, Stein B, Burr D, Constantinidis C, Laurienti P, Meredith MA, Shamma S, Fritz J, Talsma D, Senkowski D, Soto‐Faraco S, Woldorff M, Rigotti M, Barak O, Warden M, Wang X, Daw N, Kayser C, Lakatos P, Meredith M, Stein B, Dahl C, Logothetis N, Kayser C, Lee S, Shimojo S, O'Doherty J, Payzan‐LeNestour E, Dunne S, Bossaerts P, O'Doherty J (2015): Multisensory Causal Inference in the Brain. PLOS Biol 13:e1002075. PubMed PMC
Lakatos P, Chen C‐M, O'Connell MN, Mills A, Schroeder CE (2007): Neuronal oscillations and multisensory interaction in primary auditory cortex. Neuron. 53:279–292. PubMed PMC
Luck SJ, Heinze HJ, Mangun GR, Hillyard SA (1990): Visual event‐related potentials index focused attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1 components. Electroencephalogr Clin Neurophysiol 75:528–542. PubMed
Luck SJ, Woodman GF, Vogel EK (2000): Event‐related potential studies of attention. Trends Cogn Sci 4:432–440. PubMed
Marco‐Pallarés J (2005): Combined ICA‐LORETA analysis of mismatch negativity. NeuroImage 25:471–477. PubMed
Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K, Woods R, Paus T, Simpson G, Pike B, Holmes C, Collins L, Thompson P, MacDonald D, Iacoboni M, Schormann T, Amunts K, Palomero‐Gallagher N, Geyer S, Parsons L, Narr K, Kabani N, Le Goualher G, Boomsma D, Cannon T, Kawashima R, Mazoyer B (2001): A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci 356:1293–1322. PubMed PMC
Meredith MA (2002): On the neuronal basis for multisensory convergence: A brief overview. Brain Res Cogn Brain Res 14:31–40. PubMed
Meredith MA, Stein BE (1985): Descending efferents from the superior colliculus relay integrated multisensory information. Science 227:657–659. PubMed
Mückschel M, Stock A‐K, Beste C (2014): Psychophysiological mechanisms of interindividual differences in goal activation modes during action cascading. Cereb Cortex N Y N 1991: 2120–2129. PubMed
Mückschel M, Stock A‐K, Beste C (2015): Different strategies, but indifferent strategy adaptation during action cascading. Sci Rep 5:9992. PubMed PMC
Mückschel M, Stock A‐K, Dippel G, Chmielewski W, Beste C (2016): Interacting sources of interference during sensorimotor integration processes. NeuroImage 125:342–349. PubMed
Mückschel M, Gohil K, Ziemssen T, Beste C (2017): The norepinephrine system and its relevance for multicomponent behavior. NeuroImage 146:1062–1070. PubMed
Nardini M, Braddick O, Atkinson J, Cowie DA, Ahmed T, Reidy H (2008): Uneven integration for perception and action cues in children's working memory. Cogn Neuropsychol 25:968–984. PubMed
Nunez PL, Pilgreen KL (1991): The spline‐Laplacian in clinical neurophysiology: A method to improve EEG spatial resolution. J Clin Neurophysiol 8:397–413. PubMed
Parker Jones O, Prejawa S, Hope TMH, Oberhuber M, Seghier ML, Leff AP, Green DW, Price CJ (2014): Sensory‐to‐motor integration during auditory repetition: A combined fMRI and lesion study. Front Hum Neurosci 8:24. PubMed PMC
Pascual‐Marqui RD (2002): Standardized low‐resolution brain electromagnetic tomography (sLORETA): Technical details. Methods Find Exp Clin Pharmacol 24: 5–12. PubMed
Polich J (2007): Updating P300: An integrative theory of P3a and P3b. Clin Neurophysiol 118:2128–2148. PubMed PMC
Redgrave P, Gurney K (2006): The short‐latency dopamine signal: A role in discovering novel actions? Nat Rev Neurosci 7:967–975. PubMed
Rushworth MFS (2008): Intention, choice, and the medial frontal cortex. Ann N Y Acad Sci 1124:181–207. PubMed
Rushworth MFS, Buckley MJ, Behrens TEJ, Walton ME, Bannerman DM (2007): Functional organization of the medial frontal cortex. Curr Opin Neurobiol 17:220–227. PubMed
Sekihara K, Sahani M, Nagarajan SS (2005): Localization bias and spatial resolution of adaptive and nonadaptive spatial filters for MEG source reconstruction. NeuroImage 25:1056–1067. PubMed PMC
Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW (2003): Mapping cortical change across the human life span. Nat Neurosci 6:309–315. PubMed
Stein BE, Meredith MA (1993): The Merging Senses, Cognitive Neuroscience Series.
Stock A‐K, Arning L, Epplen JT, Beste C (2014): DRD1 and DRD2 genotypes modulate processing modes of goal activation processes during action cascading. J Neurosci 34:5335–5341. PubMed PMC
Stock A‐K, Ness V, Beste C (2015): Complex sensorimotor transformation processes required for response selection are facilitated by the striatum. Neuroimage 123:33–41. PubMed
Stock A‐K, Gohil K, Beste C (2016): Age‐related differences in task goal processing strategies during action cascading. Brain Struct Funct 221:2767–2775. PubMed
Twomey DM, Murphy PR, Kelly SP, O'Connell RG (2015): The classic P300 encodes a build‐to‐threshold decision variable. Eur J Neurosci 42:1636–1643. PubMed
Van Wassenhove V, Grant KW, Poeppel D (2007): Temporal window of integration in auditory‐visual speech perception. Neuropsychologia 45:598–607. PubMed
Verbruggen F, Schneider DW, Logan GD (2008): How to stop and change a response: The role of goal activation in multitasking. J Exp Psychol Hum Percept Perform 34:1212–1218. PubMed
Verleger R, Heide W, Butt C, Kömpf D (1994): Reduction of P3b in patients with temporo‐parietal lesions. Brain Res Cogn Brain Res 2:103–116. PubMed
Verleger R, Jaśkowski P, Wascher E (2005): Evidence for an Integrative Role of P3b in Linking Reaction to Perception. J Psychophysiol 19:165–181.
Vogel EK, Luck SJ (2000): The visual N1 component as an index of a discrimination process. Psychophysiology 37:190–203. PubMed
Vogt BA (2016): Midcingulate cortex: Structure, connections, homologies, functions and diseases. J Chem Neuroanat 74:28–46. PubMed
Yau JM, DeAngelis GC, Angelaki DE (2015): Dissecting neural circuits for multisensory integration and crossmodal processing. Philos Trans R Soc Lond B Biol Sci 370:20140203. PubMed PMC
Yildiz A, Quetscher C, Dharmadhikari S, Chmielewski W, Glaubitz B, Schmidt‐Wilcke T, Edden R, Dydak U, Beste C (2014): Feeling safe in the plane: Neural mechanisms underlying superior action control in airplane pilot trainees–a combined EEG/MRS study. Hum Brain Mapp 35:5040–5051. PubMed PMC