PLP1 Gene Variation Modulates Leftward and Rightward Functional Hemispheric Asymmetries
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Gu227/16-1
Deutsche Forschungsgemeinschaft
BE4045/26-1
Deutsche Forschungsgemeinschaft
PubMed
29435918
DOI
10.1007/s12035-018-0941-z
PII: 10.1007/s12035-018-0941-z
Knihovny.cz E-zdroje
- Klíčová slova
- Corpus callosum, Dichotic listening, Functional hemispheric asymmetries, Line bisection, Molecular genetics, Myelin,
- MeSH
- akustická stimulace MeSH
- dichotické testy MeSH
- dospělí MeSH
- funkční lateralita genetika MeSH
- genotyp MeSH
- jednonukleotidový polymorfismus genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- myelinový proteolipidový protein genetika MeSH
- pozornost fyziologie MeSH
- senioři MeSH
- velký mozek fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- myelinový proteolipidový protein MeSH
- PLP1 protein, human MeSH Prohlížeč
Molecular neurobiological factors determining corpus callosum physiology and anatomy have been suggested to be one of the major factors determining functional hemispheric asymmetries. Recently, it was shown that allelic variations in two myelin-related genes, the proteolipid protein 1 gene PLP1 and the contactin 1 gene CNTN1, are associated with differences in interhemispheric integration. Here, we investigated whether three single nucleotide polymorphisms that were associated with interhemispheric integration via the corpus callosum in a previous study also are relevant for functional hemispheric asymmetries. To this end, we tested more than 900 healthy adults with the forced attention dichotic listening task, a paradigm to assess language lateralization and its modulation by cognitive control processes. Moreover, we used the line bisection task, a paradigm to assess functional hemispheric asymmetries in spatial attention. We found that a polymorphism in PLP1, but not CNTN1, was associated with performance differences in both tasks. Both functional hemispheric asymmetries and their modulation by cognitive control processes were affected. These findings suggest that both left and right hemisphere dominant cognitive functions can be modulated by allelic variation in genes affecting corpus callosum structure. Moreover, higher order cognitive processes may be relevant parameters when investigating the molecular basis of hemispheric asymmetries.
Department of Human Genetics Ruhr University Bochum Bochum Germany
Faculty of Health ZBAF University of Witten Herdecke Witten Germany
Zobrazit více v PubMed
J Neurosci Res. 2004 Sep 15;77(6):858-66 PubMed
Curr Biol. 2012 Oct 23;22(20):1914-7 PubMed
Neuropsychologia. 2005;43(11):1559-67 PubMed
Brain Lang. 1984 Sep;23(1):116-25 PubMed
Neuropsychol Rev. 2005 Jun;15(2):59-71 PubMed
Neuron. 2017 Apr 19;94(2):249-263 PubMed
BMC Med Genet. 2005 Oct 03;6:35 PubMed
Neuropsychology. 2003 Jan;17(1):155-60 PubMed
Brain Lang. 2012 Jun;121(3):240-7 PubMed
Curr Biol. 2011 May 24;21(10):876-82 PubMed
Neuroimage. 2011 Apr 15;55(4):1771-8 PubMed
Brain Struct Funct. 2016 Jun;221(5):2487-91 PubMed
J Neurosci Res. 2001 Jan 15;63(2):151-64 PubMed
Cortex. 2005 Oct;41(5):695-704; discussion 731-4 PubMed
Laterality. 2011 Jan;16(1):35-74 PubMed
Cortex. 1990 Mar;26(1):77-94 PubMed
Scand J Psychol. 2009 Feb;50(1):11-22 PubMed
Biol Psychiatry. 2003 Apr 1;53(7):609-16 PubMed
Neuropsychologia. 2002;40(3):235-40 PubMed
Front Psychol. 2014 May 23;5:489 PubMed
Laterality. 2015;20(4):434-52 PubMed
Neuropsychologia. 1980;18(4-5):491-8 PubMed
Cereb Cortex. 1994 Jul-Aug;4(4):331-43 PubMed
Neuropsychologia. 1998 Feb;36(2):143-8 PubMed
Neurogenetics. 2005 Feb;6(1):1-16 PubMed
Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19551-6 PubMed
Front Psychol. 2013 Feb 07;4:42 PubMed
Neuropsychologia. 2000;38(1):93-110 PubMed
Neuropsychologia. 2013 Jun;51(7):1151-60 PubMed
Neuropsychologia. 1971 Mar;9(1):97-113 PubMed
Neurosci Biobehav Rev. 2015 Dec;59:100-10 PubMed
Neurosci Biobehav Rev. 2014 Jun;43:191-8 PubMed
Clin Genet. 2013 Dec;84(6):566-71 PubMed
Mol Neurobiol. 2018 Mar;55(3):2268-2274 PubMed
Dev Neuropsychol. 2006;30(2):753-67 PubMed
NMR Biomed. 2011 Dec;24(10):1369-79 PubMed
Neurosci Lett. 2005 Mar 3;375(3):207-10 PubMed
Behav Brain Res. 2011 Sep 30;223(1):211-21 PubMed
Neuropsychology. 2003 Oct;17(4):602-9 PubMed
Brain Cogn. 2011 Jul;76(2):225-32 PubMed
Brain Lang. 1983 Mar;18(2):236-48 PubMed
Prog Brain Res. 2012;195:103-21 PubMed
Neurosci Biobehav Rev. 2008 Jul;32(5):1044-54 PubMed
Mol Neurobiol. 2017 Dec;54(10):7908-7916 PubMed
Front Psychol. 2014 Oct 08;5:1143 PubMed
Neuropsychologia. 2017 Jan 8;94:75-83 PubMed
Brain Cogn. 2011 Jul;76(2):214-7 PubMed
Brain Res Brain Res Rev. 2003 Dec;43(3):231-46 PubMed
Brain Cogn. 2016 Nov;109:34-39 PubMed
Cortex. 1986 Sep;22(3):417-32 PubMed