Fluorescence lifetime microscopy of NADH distinguishes alterations in cerebral metabolism in vivo
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
K99 AG042026
NIA NIH HHS - United States
R01 NS057198
NINDS NIH HHS - United States
R01 NS091230
NINDS NIH HHS - United States
R00 AG042026
NIA NIH HHS - United States
R01 EB021018
NIBIB NIH HHS - United States
P01 NS055104
NINDS NIH HHS - United States
R01 MH111359
NIMH NIH HHS - United States
PubMed
28663879
PubMed Central
PMC5480486
DOI
10.1364/boe.8.002368
PII: 285121
Knihovny.cz E-zdroje
- Klíčová slova
- (170.0170) Medical optics and biotechnology, (170.3650) Lifetime-based sensing, (180.4315) Nonlinear microscopy,
- Publikační typ
- časopisecké články MeSH
Evaluating cerebral energy metabolism at microscopic resolution is important for comprehensively understanding healthy brain function and its pathological alterations. Here, we resolve specific alterations in cerebral metabolism in vivo in Sprague Dawley rats utilizing minimally-invasive 2-photon fluorescence lifetime imaging (2P-FLIM) measurements of reduced nicotinamide adenine dinucleotide (NADH) fluorescence. Time-resolved fluorescence lifetime measurements enable distinction of different components contributing to NADH autofluorescence. Ostensibly, these components indicate different enzyme-bound formulations of NADH. We observed distinct variations in the relative proportions of these components before and after pharmacological-induced impairments to several reactions involved in glycolytic and oxidative metabolism. Classification models were developed with the experimental data and used to predict the metabolic impairments induced during separate experiments involving bicuculline-induced seizures. The models consistently predicted that prolonged focal seizure activity results in impaired activity in the electron transport chain, likely the consequence of inadequate oxygen supply. 2P-FLIM observations of cerebral NADH will help advance our understanding of cerebral energetics at a microscopic scale. Such knowledge will aid in our evaluation of healthy and diseased cerebral physiology and guide diagnostic and therapeutic strategies that target cerebral energetics.
Zobrazit více v PubMed
Attwell D., Laughlin S. B., “An energy budget for signaling in the grey matter of the brain,” J. Cereb. Blood Flow Metab. 21(10), 1133–1145 (2001).10.1097/00004647-200110000-00001 PubMed DOI
Kann O., Kovács R., “Mitochondria and neuronal activity,” Am. J. Physiol. Cell Physiol. 292(2), C641–C657 (2006).10.1152/ajpcell.00222.2006 PubMed DOI
Duchen M. R., “Mitochondria in health and disease: perspectives on a new mitochondrial biology,” Mol. Aspects Med. 25(4), 365–451 (2004).10.1016/j.mam.2004.03.001 PubMed DOI
Ivanov A. I., Bernard C., Turner D. A., “Metabolic responses differentiate between interictal, ictal and persistent epileptiform activity in intact, immature hippocampus in vitro,” Neurobiol. Dis. 75, 1–14 (2015).10.1016/j.nbd.2014.12.013 PubMed DOI PMC
Lin M. T., Beal M. F., “Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases,” Nature 443(7113), 787–795 (2006).10.1038/nature05292 PubMed DOI
Lee J., “Mitochondrial drug targets in neurodegenerative diseases,” Bioorg. Med. Chem. Lett. 26(3), 714–720 (2016).10.1016/j.bmcl.2015.11.032 PubMed DOI
Becker W., Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005).
Lakowicz J. R., Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).
Lakowicz J. R., Szmacinski H., Nowaczyk K., Johnson M. L., “Fluorescence lifetime imaging of free and protein-bound NADH,” Proc. Natl. Acad. Sci. U.S.A. 89(4), 1271–1275 (1992).10.1073/pnas.89.4.1271 PubMed DOI PMC
Heikal A. A., “Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies,” Biomarkers Med. 4(2), 241–263 (2010).10.2217/bmm.10.1 PubMed DOI PMC
Huang S., Heikal A. A., Webb W. W., “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82(5), 2811–2825 (2002).10.1016/S0006-3495(02)75621-X PubMed DOI PMC
Niesner R., Beker B., Schlüsche P., Gericke K.-H., “Noniterative biexponential fluorescence lifetime imaging in the investigation of cellular metabolism by means of NAD(P)H autofluorescence,” ChemPhysChem Eur. J. Chem. Phys. Phys. Chem. 5, 1141–1149 (2004). PubMed
Vishwasrao H. D., Heikal A. A., Kasischke K. A., Webb W. W., “Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy,” J. Biol. Chem. 280(26), 25119–25126 (2005).10.1074/jbc.M502475200 PubMed DOI
Yu Q., Heikal A. A., “Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level,” J. Photochem. Photobiol. B 95(1), 46–57 (2009).10.1016/j.jphotobiol.2008.12.010 PubMed DOI PMC
Skala M. C., Riching K. M., Gendron-Fitzpatrick A., Eickhoff J., Eliceiri K. W., White J. G., Ramanujam N., “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).10.1073/pnas.0708425104 PubMed DOI PMC
Chia T. H., Williamson A., Spencer D. D., Levene M. J., “Multiphoton fluorescence lifetime imaging of intrinsic fluorescence in human and rat brain tissue reveals spatially distinct NADH binding,” Opt. Express 16(6), 4237–4249 (2008).10.1364/OE.16.004237 PubMed DOI
Stringari C., Cinquin A., Cinquin O., Digman M. A., Donovan P. J., Gratton E., “Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(33), 13582–13587 (2011).10.1073/pnas.1108161108 PubMed DOI PMC
Thorling C. A., Liu X., Burczynski F. J., Fletcher L. M., Gobe G. C., Roberts M. S., “Multiphoton microscopy can visualize zonal damage and decreased cellular metabolic activity in hepatic ischemia-reperfusion injury in rats,” J. Biomed. Opt. 16(11), 116011 (2011).10.1117/1.3647597 PubMed DOI
Yaseen M. A., Sakadžić S., Wu W., Becker W., Kasischke K. A., Boas D. A., “In vivo imaging of cerebral energy metabolism with two-photon fluorescence lifetime microscopy of NADH,” Biomed. Opt. Express 4(2), 307–321 (2013).10.1364/BOE.4.000307 PubMed DOI PMC
Cao R., Higashikubo B. T., Cardin J., Knoblich U., Ramos R., Nelson M. T., Moore C. I., Brumberg J. C., “Pinacidil induces vascular dilation and hyperemia in vivo and does not impact biophysical properties of neurons and astrocytes in vitro,” Cleve. Clin. J. Med. 76(Suppl 2), S80–S85 (2009).10.3949/ccjm.76.s2.16 PubMed DOI PMC
Sutin J., Chang C., Boas D., Brown E. N., Franceschini M. A., “Diffuse optical spectroscopy measurement of cerebral hemodynamics and oxygen metabolism during anesthesia-induced burst suppression in rats,” in (OSA, 2014), p. BT5B.3.
Nimmerjahn A., Kirchhoff F., Kerr J. N. D., Helmchen F., “Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo,” Nat. Methods 1(1), 31–37 (2004).10.1038/nmeth706 PubMed DOI
Ivannikov M. V., Sugimori M., Llinás R. R., “Calcium clearance and its energy requirements in cerebellar neurons,” Cell Calcium 47(6), 507–513 (2010).10.1016/j.ceca.2010.04.004 PubMed DOI PMC
Zhang X. D., Deslandes E., Villedieu M., Poulain L., Duval M., Gauduchon P., Schwartz L., Icard P., “Effect of 2-deoxy-D-glucose on Various Malignant Cell Lines in vitro,” Anticancer Res. 26(5A), 3561–3566 (2006). PubMed
Schmidt M. M., Dringen R., “Differential effects of iodoacetamide and iodoacetate on glycolysis and glutathione metabolism of cultured astrocytes,” Front. Neuroenergetics 1, 1 (2009).10.3389/neuro.14.001.2009 PubMed DOI PMC
Pettersen J. C., Cohen S. D., “The effects of cyanide on brain mitochondrial cytochrome oxidase and respiratory activities,” J. Appl. Toxicol. 13(1), 9–14 (1993).10.1002/jat.2550130104 PubMed DOI
Uversky V. N., “Neurotoxicant-induced animal models of Parkinson’s disease: understanding the role of rotenone, maneb and paraquat in neurodegeneration,” Cell Tissue Res. 318(1), 225–241 (2004).10.1007/s00441-004-0937-z PubMed DOI
Li N., Ragheb K., Lawler G., Sturgis J., Rajwa B., Melendez J. A., Robinson J. P., “Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production,” J. Biol. Chem. 278(10), 8516–8525 (2003).10.1074/jbc.M210432200 PubMed DOI
Yaseen M. A., Srinivasan V. J., Gorczynska I., Fujimoto J. G., Boas D. A., Sakadžić S., “Multimodal optical imaging system for in vivo investigation of cerebral oxygen delivery and energy metabolism,” Biomed. Opt. Express 6(12), 4994–5007 (2015).10.1364/BOE.6.004994 PubMed DOI PMC
Hastie T., Tibshirani R., Friedman J., The Elements of Statistical Learning, Springer Series in Statistics (Springer; New York, 2009).
Li D., Zheng W., Qu J. Y., “Time-resolved spectroscopic imaging reveals the fundamentals of cellular NADH fluorescence,” Opt. Lett. 33(20), 2365–2367 (2008).10.1364/OL.33.002365 PubMed DOI
Guarneri R., Bonavita V., “Nicotinamide Adenine Dinucleotides in the Developing Rat Brain,” Brain Res. 2(2), 145–150 (1966).10.1016/0006-8993(66)90019-9 PubMed DOI
Klaidman L. K., Leung A. C., Adams J. D., Jr., “High-performance liquid chromatography analysis of oxidized and reduced pyridine dinucleotides in specific brain regions,” Anal. Biochem. 228(2), 312–317 (1995).10.1006/abio.1995.1356 PubMed DOI
Avi-Dor Y., Olson J. M., Doherty M. D., Kaplan N. O., “Fluorescence of pyridine nucleotides in mitochondria,” J. Biol. Chem. 237, 2377–2383 (1962).
Kasischke K. A., Vishwasrao H. D., Fisher P. J., Zipfel W. R., Webb W. W., “Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis,” Science 305(5680), 99–103 (2004).10.1126/science.1096485 PubMed DOI
Ghukasyan V. V., Kao F.-J., “Monitoring cellular metabolism with fluorescence lifetime of reduced nicotinamide adenine dinucleotide,” J. Phys. Chem. C 113(27), 11532–11540 (2009).10.1021/jp810931u DOI
Koenig H., Patel A., “Biochemical basis for fluorouracil neurotoxicity: the role of Krebs cycle inhibition by fluoroacetate,” Arch. Neurol. 23(2), 155–160 (1970).10.1001/archneur.1970.00480260061008 PubMed DOI
Berry L. J., Mitchell R. B., “The relation of the tricarboxylic acid cycle to bacterial infection. II. The effect of fluoroacetate, arsenite, citrate, and succinate on Salmonella typhimurium infections in mice,” J. Infect. Dis. 93(1), 83–92 (1953).10.1093/infdis/93.1.83 PubMed DOI
Lenartowicz E., “A complex effect of arsenite on the formation of alpha-ketoglutarate in rat liver mitochondria,” Arch. Biochem. Biophys. 283(2), 388–396 (1990).10.1016/0003-9861(90)90659-M PubMed DOI
Marziaz M. L., Frazier K., Guidry P. B., Ruiz R. A., Petrikovics I., Haines D. C., “Comparison of brain mitochondrial cytochrome c oxidase activity with cyanide LD(50) yields insight into the efficacy of prophylactics,” J. Appl. Toxicol. 33(1), 50–55 (2013).10.1002/jat.1709 PubMed DOI
Wakita M., Nishimura G., Tamura M., “Some characteristics of the fluorescence lifetime of reduced pyridine nucleotides in isolated mitochondria, isolated hepatocytes, and perfused rat liver in situ,” J. Biochem. 118(6), 1151–1160 (1995).10.1093/oxfordjournals.jbchem.a125001 PubMed DOI
Blinova K., Carroll S., Bose S., Smirnov A. V., Harvey J. J., Knutson J. R., Balaban R. S., “Distribution of mitochondrial NADH fluorescence lifetimes: steady-state kinetics of matrix NADH interactions,” Biochemistry 44(7), 2585–2594 (2005).10.1021/bi0485124 PubMed DOI
Wu Y., Zheng W., Qu J. Y., “Sensing cell metabolism by time-resolved autofluorescence,” Opt. Lett. 31(21), 3122–3124 (2006).10.1364/OL.31.003122 PubMed DOI
Walsh A. J., Skala M. C., “Optical metabolic imaging quantifies heterogeneous cell populations,” Biomed. Opt. Express 6(2), 559–573 (2015).10.1364/BOE.6.000559 PubMed DOI PMC
Finikova O. S., Lebedev A. Y., Aprelev A., Troxler T., Gao F., Garnacho C., Muro S., Hochstrasser R. M., Vinogradov S. A., “Oxygen microscopy by two-photon-excited phosphorescence,” ChemPhysChem Eur. J. Chem. Phys. Phys. Chem. 9, 1673–1679 (2008). PubMed PMC
Roussakis E., Spencer J. A., Lin C. P., Vinogradov S. A., “Two-photon antenna-core oxygen probe with enhanced performance,” Anal. Chem. 86(12), 5937–5945 (2014).10.1021/ac501028m PubMed DOI PMC
Baraghis E., Devor A., Fang Q., Srinivasan V. J., Wu W., Lesage F., Ayata C., Kasischke K. A., Boas D. A., Sakadzić S., “Two-photon microscopy of cortical NADH fluorescence intensity changes: correcting contamination from the hemodynamic response,” J. Biomed. Opt. 16(10), 106003 (2011).10.1117/1.3633339 PubMed DOI PMC
Blacker T. S., Mann Z. F., Gale J. E., Ziegler M., Bain A. J., Szabadkai G., Duchen M. R., “Separating NADH and NADPH fluorescence in live cells and tissues using FLIM,” Nat. Commun. 5, 3936 (2014).10.1038/ncomms4936 PubMed DOI PMC
Chance B., Schoener B., Oshino R., Itshak F., Nakase Y., “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples: NADH and flavoprotein fluorescence signals,” J. Biol. Chem. 254(11), 4764–4771 (1979). PubMed
Chance B., Thorell B., “Localization and Kinetics of reduced pyridine nucleotide in living cells by microfluorometry,” J. Biol. Chem. 234, 3044–3050 (1959). PubMed
Chorvat D., Jr, Chorvatova A., “Multi-wavelength fluorescence lifetime spectroscopy: a new approach to the study of endogenous fluorescence in living cells and tissues,” Laser Phys. Lett. 6(3), 175–193 (2009).10.1002/lapl.200810132 DOI
Gafni A., Brand L., “Fluorescence decay studies of reduced nicotinamide adenine dinucleotide in solution and bound to liver alcohol dehydrogenase,” Biochemistry 15(15), 3165–3171 (1976).10.1021/bi00660a001 PubMed DOI
Moreno-Sánchez R., Rodríguez-Enríquez S., Marín-Hernández A., Saavedra E., “Energy metabolism in tumor cells,” FEBS J. 274(6), 1393–1418 (2007).10.1111/j.1742-4658.2007.05686.x PubMed DOI
Schwartz T. H., Bonhoeffer T., “In vivo optical mapping of epileptic foci and surround inhibition in ferret cerebral cortex,” Nat. Med. 7(9), 1063–1067 (2001).10.1038/nm0901-1063 PubMed DOI
Hirase H., Creso J., Buzsáki G., “Capillary level imaging of local cerebral blood flow in bicuculline-induced epileptic foci,” Neuroscience 128(1), 209–216 (2004).10.1016/j.neuroscience.2004.07.002 PubMed DOI
Ma H. T., Wu C. H., Wu J. Y., “Initiation of spontaneous epileptiform events in the rat neocortex in vivo,” J. Neurophysiol. 91(2), 934–945 (2003).10.1152/jn.00274.2003 PubMed DOI PMC
Zhao M., Nguyen J., Ma H., Nishimura N., Schaffer C. B., Schwartz T. H., “Preictal and ictal neurovascular and metabolic coupling surrounding a seizure focus,” J. Neurosci. 31(37), 13292–13300 (2011).10.1523/JNEUROSCI.2597-11.2011 PubMed DOI PMC
Tenny R. T., Sharbrough F. W., Anderson R. E., Sundt T. M., Jr., “Correlation of intracellular redox states and pH with blood flow in primary and secondary seizure foci,” Ann. Neurol. 8(6), 564–573 (1980).10.1002/ana.410080604 PubMed DOI
Cooper C. E., Cope M., Elwell C. E., Delpy D. T., “Bicuculline-Induced seizures: a challenge for optical and biochemical modeling of the cytochrome oxidase cua nirs signal,” in Oxygen Transport to Tissue XXX, Liss P., Hansell P., Bruley D. F., Harrison D. K., eds. (Springer; US, 2009), Vol. 645, pp. 129–134. PubMed
Schuchmann S., Buchheim K., Meierkord H., Heinemann U., “A relative energy failure is associated with low-Mg2+ but not with 4-aminopyridine induced seizure-like events in entorhinal cortex,” J. Neurophysiol. 81(1), 399–403 (1999). PubMed
Dóra E., “Glycolysis and epilepsy-induced changes in cerebrocortical NAD/NADH redox state,” J. Neurochem. 41(6), 1774–1777 (1983).10.1111/j.1471-4159.1983.tb00894.x PubMed DOI
Duffy T. E., Howse D. C., Plum F., “Cerebral energy metabolism during experimental status epilepticus,” J. Neurochem. 24(5), 925–934 (1975).10.1111/j.1471-4159.1975.tb03657.x PubMed DOI
Kreisman N. R., Lamanna J. C., Rosenthal M., Sick T. J., “Oxidative metabolic responses with recurrent seizures in rat cerebral cortex: role of systemic factors,” Brain Res. 218(1-2), 175–188 (1981).10.1016/0006-8993(81)91299-3 PubMed DOI
Digman M. A., Caiolfa V. R., Zamai M., Gratton E., “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J. 94(2), L14–L16 (2008).10.1529/biophysj.107.120154 PubMed DOI PMC
Wright B. K., Andrews L. M., Jones M. R., Stringari C., Digman M. A., Gratton E., “Phasor-FLIM analysis of NADH distribution and localization in the nucleus of live progenitor myoblast cells,” Microsc. Res. Tech. 75(12), 1717–1722 (2012).10.1002/jemt.22121 PubMed DOI PMC
Boyer P., Theorell H., Pokras L., Sillén L. G., Thorell B., “The change in reduced diphosphopyridine nucleotide (dpnh) fluorescence upon combination with liver alcohol dehydrogenase (adh),” Acta Chem. Scand. 10, 447–450 (1956).10.3891/acta.chem.scand.10-0447 DOI
Chance B., Baltscheffsky H., “Respiratory enzymes in oxidative phosphorylation, VII, Binding of intramitochondrial reduced pyridine nucleotide,” J. Biol. Chem. 233(3), 736–739 (1958). PubMed
Chance B., Baltscheffsky M., “Spectroscopic effects of adenosine diphosphate upon the respiratory pigments of rat-heart-muscle sarcosomes,” Biochem. J. 68(2), 283–295 (1958).10.1042/bj0680283 PubMed DOI PMC
Chance B., Cohen P., Jobsis F., Schoener B., “Intracellular oxidation-reduction states in vivo,” Science 137(3529), 499–508 (1962).10.1126/science.137.3529.499 PubMed DOI
Chance B., Jamieson D., Coles H., “Energy-linked pyridine nucleotide reduction - inhibitory effects of hyperbaric oxygen in vitro and in vivo,” Nature 206, 257 (1965). PubMed
Winkler U., Hirrlinger J., “Crosstalk of signaling and metabolism mediated by the NAD+/NADH redox state in brain cells,” Neurochem. Res. 40(12), 2394–2401 (2015).10.1007/s11064-015-1526-0 PubMed DOI
Hung Y. P., Albeck J. G., Tantama M., Yellen G., “Imaging cytosolic NADH-NAD+ redox state with a genetically encoded fluorescent biosensor,” Cell Metab. 14(4), 545–554 (2011).10.1016/j.cmet.2011.08.012 PubMed DOI PMC
Zhao Y., Jin J., Hu Q., Zhou H.-M., Yi J., Yu Z., Xu L., Wang X., Yang Y., Loscalzo J., “Genetically encoded fluorescent sensors for intracellular NADH detection,” Cell Metab. 14(4), 555–566 (2011).10.1016/j.cmet.2011.09.004 PubMed DOI PMC
Liu D., Evans T., Zhang F., “Applications and advances of metabolite biosensors for metabolic engineering,” Metab. Eng. 31, 35–43 (2015).10.1016/j.ymben.2015.06.008 PubMed DOI
Yellen G., Mongeon R., “Quantitative two-photon imaging of fluorescent biosensors,” Curr. Opin. Chem. Biol. 27, 24–30 (2015).10.1016/j.cbpa.2015.05.024 PubMed DOI PMC
Bioenergetic Mechanisms of Seizure Control