Bioenergetic Mechanisms of Seizure Control
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
30349461
PubMed Central
PMC6187982
DOI
10.3389/fncel.2018.00335
Knihovny.cz E-zdroje
- Klíčová slova
- adenosine, lactate, neurometabolic coupling, neurovascular coupling, pericyte, seizure,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Epilepsy is characterized by the regular occurrence of seizures, which follow a stereotypical sequence of alterations in the electroencephalogram. Seizures are typically a self limiting phenomenon, concluding finally in the cessation of hypersynchronous activity and followed by a state of decreased neuronal excitability which might underlie the cognitive and psychological symptoms the patients experience in the wake of seizures. Many efforts have been devoted to understand how seizures spontaneously stop in hope to exploit this knowledge in anticonvulsant or neuroprotective therapies. Besides the alterations in ion-channels, transmitters and neuromodulators, the successive build up of disturbances in energy metabolism have been suggested as a mechanism for seizure termination. Energy metabolism and substrate supply of the brain are tightly regulated by different mechanisms called neurometabolic and neurovascular coupling. Here we summarize the current knowledge whether these mechanisms are sufficient to cover the energy demand of hypersynchronous activity and whether a mismatch between energy need and supply could contribute to seizure control.
Department of Medical Neuroscience Faculty of Medicine Dalhousie University Halifax NS Canada
Institute of Physiology Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Abbott N. J., Friedman A. (2012). Overview and introduction: the blood-brain barrier in health and disease. Epilepsia 53(Suppl. 6), 1–6. 10.1111/j.1528-1167.2012.03696.x PubMed DOI PMC
Ames A. (2000). CNS energy metabolism as related to function. Brain Res. Brain Res. Rev. 34 42–68. 10.1016/S0165-0173(00)00038-2 PubMed DOI
Angamo E. A., Rösner J., Liotta A., Kovács R., Heinemann U. (2016). A neuronal lactate uptake inhibitor slows recovery of extracellular ion concentration changes in the hippocampal CA3 region by affecting energy metabolism. J. Neurophysiol. 116 2420–2430. 10.1152/jn.00327.2016 PubMed DOI PMC
Angamo E. A., ul Haq R., Rösner J., Gabriel S., Gerevich Z., Heinemann U., et al. (2017). Contribution of intrinsic lactate to maintenance of seizure activity in neocortical slices from patients with temporal lobe epilepsy and in rat entorhinal cortex. Int. J. Mol. Sci. 18:1835. 10.3390/ijms18091835 PubMed DOI PMC
Avsar E., Empson R. M. (2004). Adenosine acting via A1 receptors, controls the transition to status epilepticus-like behaviour in an in vitro model of epilepsy. Neuropharmacology 47 427–437. 10.1016/j.neuropharm.2004.04.015 PubMed DOI
Bar-Klein G., Lublinsky S., Kamintsky L., Noyman I., Veksler R., Dalipaj H., et al. (2017). Imaging blood-brain barrier dysfunction as a biomarker for epileptogenesis. Brain 140 1692–1705. 10.1093/brain/awx073 PubMed DOI
Beamer E., Otahal J., Sills G. J., Thippeswamy T. (2012). N(w) -propyl-L-arginine (L-NPA) reduces status epilepticus and early epileptogenic events in a mouse model of epilepsy: behavioural, EEG and immunohistochemical analyses. Eur. J. Neurosci. 36 3194–3203. 10.1111/j.1460-9568.2012.08234.x PubMed DOI
Bedner P., Dupper A., Huttmann K., Muller J., Herde M. K., Dublin P., et al. (2015). Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain 138 1208–1222. 10.1093/brain/awv067 PubMed DOI PMC
Ben-Ari Y. (2001). Cell death and synaptic reorganizations produced by seizures. Epilepsia 42(Suppl. 3), 5–7. 10.1046/j.1528-1157.2001.042suppl.3005.x PubMed DOI
Bergersen L. H. (2007). Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle. Neuroscience 145 11–19. 10.1016/j.neuroscience.2006.11.062 PubMed DOI
Bergersen L. H., Magistretti P. J., Pellerin L. (2005). Selective postsynaptic co-localization of MCT2 with AMPA receptor GluR2/3 subunits at excitatory synapses exhibiting AMPA receptor trafficking. Cereb. Cortex 15 361–370. 10.1093/cercor/bhh138 PubMed DOI
Berndt N., Kann O., Holzhütter H. G. (2015). Physiology-based kinetic modeling of neuronal energy metabolism unravels the molecular basis of NAD(P)H fluorescence transients. J. Cereb. Blood Flow Metab. 35 1494–1506. 10.1038/jcbfm.2015.70 PubMed DOI PMC
Boison D., Steinhäuser C. (2018). Epilepsy and astrocyte energy metabolism. Glia 66 1235–1243. 10.1002/glia.23247 PubMed DOI PMC
Bough K. J., Rho J. M. (2007). Anticonvulsant mechanisms of the ketogenic diet. Epilepsia 48 43–58. 10.1111/j.1528-1167.2007.00915.x PubMed DOI
Busija D. W., Bari F., Domoki F., Louis T. (2007). Mechanisms involved in the cerebrovascular dilator effects of N-methyl-d-aspartate in cerebral cortex. Brain Res. Rev. 56 89–100. 10.1016/j.brainresrev.2007.05.011 PubMed DOI PMC
Calabrese V. P., Gruemer H. D., James K., Hranowsky N., DeLorenzo R. J. (1991). Cerebrospinal fluid lactate levels and prognosis in status epilepticus. Epilepsia 32 816–821. 10.1111/j.1528-1157.1991.tb05538.x PubMed DOI
Camenzind R. S., Chip S., Gutmann H. (2010). Preservation of transendothelial glucose transporter 1 and P-glycoprotein transporters in a cortical slice culture model of the blood-brain barrier. Neuroscience 170 361–371. 10.1016/j.neuroscience.2010.06.073 PubMed DOI
Caspers H., Speckmann E. J. (1972). Cerebral pO2, pCO2 and pH: changes during convulsive activity and their significance for spontaneous arrest of seizures. Epilepsia 13 699–725. 10.1111/j.1528-1157.1972.tb04403.x PubMed DOI
Cavus I., Kasoff W. S., Cassaday M. P., Jacob R., Gueorguieva R., Sherwin R. S., et al. (2005). Extracellular metabolites in the cortex and hippocampus of epileptic patients. Ann. Neurol. 57 226–235. 10.1002/ana.20380 PubMed DOI
Cendes F., Caramanos Z., Andermann F., Dubeau F., Arnold D. L. (1997). Proton magnetic resonance spectroscopic imaging and magnetic resonance imaging volumetry in the lateralization of temporal lobe epilepsy: a series of 100 patients. Ann. Neurol. 42 737–746. 10.1002/ana.410420510 PubMed DOI
Clark L. P., Prout T. P. (1903). Status epilepticus: a clinical and pathological study in epilepsy. Am. J. Psychiatry 60 645–698. 10.1176/ajp.61.1.81 DOI
Cunha R. A. (2001). Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem. Int. 38 107–125. 10.1016/S0197-0186(00)00034-6 PubMed DOI
Denton R. M. (2009). Regulation of mitochondrial dehydrogenases by calcium ions. Biochim. Biophys. Acta 1787 1309–1316. 10.1016/j.bbabio.2009.01.005 PubMed DOI
Dias R. B., Rombo D. M., Ribeiro J. A., Henley J. M., Sebastião A. M. (2013). Adenosine: setting the stage for plasticity. Trends Neurosci. 36 248–257. 10.1016/j.tins.2012.12.003 PubMed DOI
Dienel G. A. (2017). Lack of appropriate stoichiometry: strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain. J. Neurosci. Res. 95 2103–2125. 10.1002/jnr.24015 PubMed DOI
Doğan E. A., Ünal A., Ünal A., Erdoğan Ç. (2017). Clinical utility of serum lactate levels for differential diagnosis of generalized tonic-clonic seizures from psychogenic nonepileptic seizures and syncope. Epilepsy Behav. 75 13–17. 10.1016/j.yebeh.2017.07.003 PubMed DOI
Doman G., Pelligra R. (2003). Ictogenesis: the origin of seizures in humans. A new look at an old theory. Med. Hypotheses 60 129–132. 10.1016/S0306-9877(02)00348-1 PubMed DOI
Dreier J. P. (2011). The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat. Med. 17 439–447. 10.1038/nm.2333 PubMed DOI
Dulla C. G., Dobelis P., Pearson T., Frenguelli B. G., Staley K. J., Masino S. A. (2005). Adenosine and ATP link PCO2 to cortical excitability via pH. Neuron 48 1011–1023. 10.1016/j.neuron.2005.11.009 PubMed DOI PMC
Dunn K. M., Nelson M. T. (2014). Neurovascular signaling in the brain and the pathological consequences of hypertension. Am. J. Physiol. Heart Circ. Physiol. 306 H1–H14. 10.1152/ajpheart.00364.2013 PubMed DOI PMC
Dunwiddie T. V. (1980). Endogenously released adenosine regulates excitability in the in vitro hippocampus. Epilepsia 21 541–548. 10.1111/j.1528-1157.1980.tb04305.x PubMed DOI
During M. J., Spencer D. D. (1992). Adenosine: a potential mediator of seizure arrest and postictal refractoriness. Ann. Neurol. 32 618–624. 10.1002/ana.410320504 PubMed DOI
Essig C. F., Flanary H. G. (1966). The importance of the convulsion in occurrence and rate of development of electroconvulsive threshold elevation. Exp. Neurol. 14 448–452. 10.1016/0014-4886(66)90129-4 PubMed DOI
Fabene P. F., Merigo F., Galiè M., Benati D., Bernardi P., Farace P., et al. (2007). Pilocarpine-induced status epilepticus in rats involves ischemic and excitotoxic mechanisms. PLoS One 2:e1105. 10.1371/journal.pone.0001105 PubMed DOI PMC
Farrell J. S., Colangeli R., Wolff M. D., Wall A. K., Phillips T. J., George A., et al. (2017a). Postictal hypoperfusion/hypoxia provides the foundation for a unified theory of seizure-induced brain abnormalities and behavioral dysfunction. Epilepsia 58 1493–1501. 10.1111/epi.13827 PubMed DOI
Farrell J. S., Gaxiola-Valdez I., Wolff M. D., David L. S., Dika H. I., Geeraert B. L., et al. (2016). Postictal behavioural impairments are due to a severe prolonged hypoperfusion/hypoxia event that is COX-2 dependent. eLife 5:e19352. 10.7554/eLife.19352 PubMed DOI PMC
Farrell J. S., Wolff M. D., Teskey G. C. (2017b). Neurodegeneration and pathology in epilepsy: clinical and basic perspectives. Adv. Neurobiol. 15 317–334. 10.1007/978-3-319-57193-5_12 PubMed DOI
Fedele D. E., Li T., Lan J. Q., Fredholm B. B., Boison D. (2006). Adenosine A1 receptors are crucial in keeping an epileptic focus localized. Exp. Neurol. 200 184–190. 10.1016/j.expneurol.2006.02.133 PubMed DOI
Fernández-Klett F., Priller J. (2015). Diverse functions of pericytes in cerebral blood flow regulation and ischemia. J. Cereb. Blood Flow Metab. 35 883–887. 10.1038/jcbfm.2015.60 PubMed DOI PMC
Filosa J. A., Bonev A. D., Straub S. V., Meredith A. L., Wilkerson M. K., Aldrich R. W., et al. (2006). Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat. Neurosci. 9 1397–1403. 10.1038/nn1779 PubMed DOI
Filosa J. A., Iddings J. A. (2013). Astrocyte regulation of cerebral vascular tone. Am. J. Physiol. Heart Circ. Physiol. 305 H609–H619. 10.1152/ajpheart.00359.2013 PubMed DOI PMC
Fisher R. S., Acevedo C., Arzimanoglou A., Bogacz A., Cross J. H., Elger C. E., et al. (2014). ILAE official report: a practical clinical definition of epilepsy. Epilepsia 55 475–482. 10.1111/epi.12550 PubMed DOI
Fisher R. S., van Emde Boas W., Blume W., Elger C., Genton P., Lee P., et al. (2005). Epileptic seizures and epilepsy: definitions proposed by the international league against epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46 470–472. 10.1111/j.0013-9580.2005.66104.x PubMed DOI
Folbergrová J., Haugvicová R., Mares P. (2000). Behavioral and metabolic changes in immature rats during seizures induced by homocysteic acid: the protective effect of NMDA and non-NMDA receptor antagonists. Exp. Neurol. 161 336–345. 10.1006/exnr.1999.7264 PubMed DOI
Folbergrová J., Kunz W. S. (2012). Mitochondrial dysfunction in epilepsy. Mitochondrion 12 35–40. 10.1016/j.mito.2011.04.004 PubMed DOI
Folbergrová J., Otáhal J., Druga R. (2012). Brain superoxide anion formation in immature rats during seizures: protection by selected compounds. Exp. Neurol. 233 421–429. 10.1016/j.expneurol.2011.11.009 PubMed DOI
Foster K. A., Beaver C. J., Turner D. A. (2005). Interaction between tissue oxygen tension and NADH imaging during synaptic stimulation and hypoxia in rat hippocampal slices. Neuroscience 132 645–657. 10.1016/j.neuroscience.2005.01.040 PubMed DOI
Frantseva M. V., Velazquez J. L., Hwang P. A., Carlen P. L. (2000). Free radical production correlates with cell death in an in vitro model of epilepsy. Eur. J. Neurosci. 12 1431–1439. 10.1046/j.1460-9568.2000.00016.x PubMed DOI
Galeffi F., Foster K. A., Sadgrove M. P., Beaver C. J., Turner D. A. (2007). Lactate uptake contributes to the NAD(P)H biphasic response and tissue oxygen response during synaptic stimulation in area CA1 of rat hippocampal slices. J. Neurochem. 103 2449–2461. 10.1111/j.1471-4159.2007.04939.x PubMed DOI PMC
Galow L. V., Schneider J., Lewen A., Ta T. T., Papageorgiou I. E., Kann O. (2014). Energy substrates that fuel fast neuronal network oscillations. Front. Neurosci. 5:398. 10.3389/fnins.2014.00398 PubMed DOI PMC
Gasior M., Yankura J., Hartman A. L., French A., Rogawski M. A. (2010). Anticonvulsant and proconvulsant actions of 2-deoxy-D-glucose. Epilepsia 51 1385–1394. 10.1111/j.1528-1167.2010.02593.x PubMed DOI
Gellerich F. N., Gizatullina Z., Trumbekaite S., Korzeniewski B., Gaynutdinov T., Seppet E., et al. (2012). Cytosolic Ca2 + regulates the energization of isolated brain mitochondria by formation of pyruvate through the malate-aspartate shuttle. Biochem. J. 443 747–755. 10.1042/BJ20110765 PubMed DOI
Geneslaw A. S., Zhao M., Ma H., Schwartz T. H. (2011). Tissue hypoxia correlates with intensity of interictal spikes. J. Cereb. Blood Flow Metab. 31 1394–1402. 10.1038/jcbfm.2011.16 PubMed DOI PMC
Gjedde A. (2005). “The pathways of oxygen in brain I,” in Oxygen Transport to Tissue XXVI. Advances in Experimental Medicine and Biology Vol. 566 eds P. Okunieff, J. Williams, Y. Chen. (Boston, MA: Springer; ).
Gordon G. R., Choi H. B., Rungta R. L., Ellis-Davies G. C., MacVicar B. A. (2008). Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456 745–749. 10.1038/nature07525 PubMed DOI PMC
Gorter J. A., van Vliet E. A., Aronica E. (2015). Status epilepticus, blood-brain barrier disruption, inflammation, and epileptogenesis. Epilepsy Behav. 49 13–16. 10.1016/j.yebeh.2015.04.047 PubMed DOI
Guillon B., Duncan R., Biraben A., Bernard A. M., Vignal J. P., Chauvel P. (1998). Correlation between interictal regional cerebral blood flow and depth-recorded interictal spiking in temporal lobe epilepsy. Epilepsia 39 67–76. 10.1111/j.1528-1157.1998.tb01276.x PubMed DOI
Haas H. L., Greene R. W. (1984). Adenosine enhances afterhyperpolarization and accommodation in hippocampal pyramidal cells. Pflugers Arch. 402 244–247. 10.1007/BF00585506 PubMed DOI
Hall C. N., Klein-Flügge M. C., Howarth C., Attwell D. (2012). Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing. J. Neurosci. 32 8940–8951. 10.1523/JNEUROSCI.0026-12.2012 PubMed DOI PMC
Hall C. N., Reynell C., Gesslein B., Hamilton N. B., Mishra A., Sutherland B. A., et al. (2014). Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508 55–60. 10.1038/nature13165 PubMed DOI PMC
Hamil N. E., Cock H. R., Walker M. C. (2012). Acute down-regulation of adenosine A(1) receptor activity in status epilepticus. Epilepsia 53 177–188. 10.1111/j.1528-1167.2011.03340.x PubMed DOI
Harris S., Boorman L., Bruyns-Haylett M., Kennerley A., Ma H., Zhao M., et al. (2014). Contralateral dissociation between neural activity and cerebral blood volume during recurrent acute focal neocortical seizures. Epilepsia 55 1423–1430. 10.1111/epi.12726 PubMed DOI PMC
Hartman A. L., Stafstrom C. E. (2013). Harnessing the power of metabolism for seizure prevention: focus on dietary treatments. Epilepsy Behav. 26 266–272. 10.1016/j.yebeh.2012.09.019 PubMed DOI PMC
Heinemann U. (2004). Basic mechanisms of partial epilepsies. Curr. Opin. Neurol. 17 155–159. 10.1097/00019052-200404000-00012 PubMed DOI
Heinemann U., Buchheim K., Gabriel S., Kann O., Kovács R., Schuchmann S. (2002). Coupling of electrical and metabolic activity during epileptiform discharges. Epilepsia 43(Suppl. 5), 168–173. 10.1046/j.1528-1157.43.s.5.15.x PubMed DOI
Heinemann U., Kaufer D., Friedman A. (2012). ). Blood-brain barrier dysfunction, TGFβ signaling, and astrocyte dysfunction in epilepsy. Glia 60 1251–1257. 10.1002/glia.22311 PubMed DOI PMC
Hetherington H., Kuzniecky R., Pan J., Mason G., Morawetz R., Harris C., et al. (1995). Proton nuclear magnetic resonance spectroscopic imaging of human temporal lobe epilepsy at 4.1 T. Ann. Neurol. 38 396–404. 10.1002/ana.410380309 PubMed DOI
Hildebrand M. S., Damiano J. A., Mullen S. A., Bellows S. T., Oliver K. L., Dahl H. H., et al. (2014). Glucose metabolism transporters and epilepsy: only GLUT1 has an established role. Epilepsia 55 e18–e21. 10.1111/epi.12519 PubMed DOI
Hong S. B., Han H. J., Roh S. Y., Seo D. W., Kim S. E., Kim M. H. (2002). Hypometabolism and interictal spikes during positron emission tomography scanning in temporal lobe epilepsy. Eur. Neurol. 48 65–70. 10.1159/000062985 PubMed DOI
Hu H., Roth F. C., Vandael D., Jonas P. (2018). Complementary tuning of Na + and K + channel gating underlies fast and energy-efficient action potentials in GABAergic interneuron axons. Neuron 98 156.e5–165.e6. 10.1016/j.neuron.2018.02.024 PubMed DOI PMC
Huchzermeyer C., Albus K., Gabriel H. J., Otáhal J., Taubenberger N., Heinemann U., et al. (2008). Gamma oscillations and spontaneous network activity in the hippocampus are highly sensitive to decreases in pO2 and concomitant changes in mitochondrial redox state. J. Neurosci. 28 1153–1162. 10.1523/JNEUROSCI.4105-07.2008 PubMed DOI PMC
Huchzermeyer C., Berndt N., Holzhütter H. G., Kann O. (2013). Oxygen consumption rates during three different neuronal activity states in the hippocampal CA3 network. J. Cereb. Blood Flow Metab. 33 263–271. 10.1038/jcbfm.2012.165 PubMed DOI PMC
Ingvar M. (1986). Cerebral blood flow and metabolic rate during seizures. Relationship to epileptic brain damage. Ann. N. Y. Acad. Sci. 462 194–206. 10.1111/j.1749-6632.1986.tb51254.x PubMed DOI
Ivanov A. I., Bernard C., Turner D. A. (2015). Metabolic responses differentiate between interictal, ictal and persistent epileptiform activity in intact, immature hippocampus in vitro. Neurobiol. Dis. 75 1–14. 10.1016/j.nbd.2014.12.013 PubMed DOI PMC
Kang H. C., Lee Y. M., Kim H. D. (2013). Mitochondrial disease and epilepsy. Brain Dev. 35 757–761. 10.1016/j.braindev.2013.01.006 PubMed DOI
Kann O., Huchzermeyer C., Kovács R., Wirtz S., Schuelke M. (2011). Gamma oscillations in the hippocampus require high complex I gene expression and strong functional performance of mitochondria. Brain 134(Pt 2), 345–358. 10.1093/brain/awq333 PubMed DOI
Kann O., Kovács R., Njunting M., Behrens C. J., Otáhal J., Lehmann T. N., et al. (2005). Metabolic dysfunction during neuronal activation in the ex vivo hippocampus from chronic epileptic rats and humans. Brain 128(Pt 10), 2396–2407. 10.1093/brain/awh568 PubMed DOI
Kannurpatti S. S. (2017). Mitochondrial calcium homeostasis: implications for neurovascular and neurometabolic coupling. J. Cereb. Blood Flow Metab. 37 381–395. 10.1177/0271678X16680637 PubMed DOI PMC
Kasischke K. A., Vishwasrao H. D., Fisher P. J., Zipfel W. R., Webb W. W. (2004). Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 2 99–103. 10.1126/science.1096485 PubMed DOI
Kida I., Kennan R. P., Rothman D. L., Behar K. L., Hyder F. (2000). High-resolution CMR(O2) mapping in rat cortex: a multiparametric approach to calibration of BOLD image contrast at 7 Tesla. J. Cereb. Blood Flow Metab. 20 847–860. 10.1097/00004647-200005000-00012 PubMed DOI
Kim K. J., Filosa J. A. (2012). Advanced in vitro approach to study neurovascular coupling mechanisms in the brain microcirculation. J. Physiol. 590 1757–1770. 10.1113/jphysiol.2011.222778 PubMed DOI PMC
Kirchner A., Velísková J., Velísek L. (2006). Differential effects of low glucose concentrations on seizures and epileptiform activity in vivo and in vitro. Eur. J. Neurosci. 23 1512–1522. 10.1111/j.1460-9568.2006.04665.x PubMed DOI
Klaft Z. J., Hollnagel J. O., Salar S., Calişkan G., Schulz S. B., Schneider U. C., et al. (2016). Adenosine A1 receptor-mediated suppression of carbamazepine-resistant seizure-like events in human neocortical slices. Epilepsia 57 746–756. 10.1111/epi.13360 PubMed DOI
Klaft Z. J., Schulz S. B., Maslarova A., Gabriel S., Heinemann U., Gerevich Z. (2012). Extracellular ATP differentially affects epileptiform activity via purinergic P2X7 and adenosine A1 receptors in naive and chronic epileptic rats. Epilepsia 53 1978–1986. 10.1111/j.1528-1167.2012.03724.x PubMed DOI
Kochanek P. M., Vagni V. A., Janesko K. L., Washington C. B., Crumrine P. K., Garman R. H., et al. (2006). Adenosine A1 receptor knockout mice develop lethal status epilepticus after experimental traumatic brain injury. J. Cereb. Blood Flow Metab. 26 565–575. 10.1038/sj.jcbfm.9600218 PubMed DOI
Kovac S., Domijan A. M., Walker M. C., Abramov A. Y. (2012). Prolonged seizure activity impairs mitochondrial bioenergetics and induces cell death. J. Cell Sci. 125(Pt 7), 1796–1806. 10.1242/jcs.099176 PubMed DOI PMC
Kovács R., Heinemann U. (2014). Models in research of pharmacoresistant epilepsy: present and future in development of antiepileptic drugs. Curr. Med. Chem. 21 689–703. 10.2174/0929867320666131119152613 PubMed DOI
Kovács R., Kardos J., Heinemann U., Kann O. (2005). Mitochondrial calcium ion and membrane potential transients follow the pattern of epileptiform discharges in hippocampal slice cultures. J. Neurosci. 25 4260–4269. 10.1523/JNEUROSCI.4000-04.2005 PubMed DOI PMC
Kovács R., Papageorgiou I., Heinemann U. (2011). Slice cultures as a model to study neurovascular coupling and blood brain barrier in vitro. Cardiovasc. Psychiatry Neurol. 2011:646958. 10.1155/2011/646958 PubMed DOI PMC
Kovács R., Rabanus A., Otáhal J., Patzak A., Kardos J., Albus K., et al. (2009). Endogenous nitric oxide is a key promoting factor for initiation of seizure-like events in hippocampal and entorhinal cortex slices. J. Neurosci. 29 8565–8577. 10.1523/JNEUROSCI.5698-08.2009 PubMed DOI PMC
Kovács R., Schuchmann S., Gabriel S., Kann O., Kardos J., Heinemann U. (2002). Free radical-mediated cell damage after experimental status epilepticus in hippocampal slice cultures. J. Neurophysiol. 88 2909–2918. 10.1152/jn.00149.2002 PubMed DOI
Kovács R., Schuchmann S., Gabriel S., Kardos J., Heinemann U. (2001). Ca2 + signalling and changes of mitochondrial function during low-Mg2 + -induced epileptiform activity in organotypic hippocampal slice cultures. Eur. J. Neurosci. 13 1311–1319. 10.1046/j.0953-816x.2001.01505.x PubMed DOI
Kunz W. S., Kudin A. P., Vielhaber S., Blümcke I., Zuschratter W., Schramm J., et al. (2000). Mitochondrial complex I deficiency in the epileptic focus of patients with temporal lobe epilepsy. Ann. Neurol. 48 766–773. 10.1002/1531-8249(200011)48:5<766::AID-ANA10>3.0.CO;2-M PubMed DOI
Kuroda Y. (1978). Physiological roles of adenosine derivatives which are released during neurotransmission in mammalian brain. J. Physiol. 74 463–470. PubMed
Lauritzen F., Heuser K., de Lanerolle N. C., Lee T. S., Spencer D. D., Kim J. H., et al. (2012). Redistribution of monocarboxylate transporter 2 on the surface of astrocytes in the human epileptogenic hippocampus. Glia 60 1172–1181. 10.1002/glia.22344 PubMed DOI PMC
Lauritzen M. (2005). Reading vascular changes in brain imaging: is dendritic calcium the key? Nat. Rev. Neurosci. 6 77–85. 10.1038/nrn1589 PubMed DOI
Leal-Campanario R., Alarcon-Martinez L., Rieiro H., Martinez-Conde S., Alarcon-Martinez T., Zhao X., et al. (2017). Abnormal capillary vasodynamics contribute to ictal neurodegeneration in epilepsy. Sci. Rep. 2017:43276. 10.1038/srep43276 PubMed DOI PMC
Ledo A., Barbosa R., Cadenas E., Laranjinha J. (2010). Dynamic and interacting profiles of ∗NO and O2 in rat hippocampal slices. Free Radic. Biol. Med. 48 1044–1050. 10.1016/j.freeradbiomed.2010.01.024 PubMed DOI PMC
Lee Y., Morrison B. M., Li Y., Lengacher S., Farah M. H., Hoffman P. N., et al. (2012). Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487 443–448. 10.1038/nature11314 PubMed DOI PMC
Lian X. Y., Khan F. A., Stringer J. L. (2007). Fructose-1,6-bisphosphate has anticonvulsant activity in models of acute seizures in adult rats. J. Neurosci. 27 12007–12011. 10.1523/JNEUROSCI.3163-07.2007 PubMed DOI PMC
Liotta A., Rösner J., Huchzermeyer C., Wojtowicz A., Kann O., Schmitz D., et al. (2012). Energy demand of synaptic transmission at the hippocampal Schaffer-collateral synapse. J. Cereb. Blood Flow Metab. 32 2076–2083. 10.1038/jcbfm.2012.116 PubMed DOI PMC
Löscher W., Köhling R. (2010). Functional, metabolic, and synaptic changes after seizures as potential targets for antiepileptic therapy. Epilepsy Behav. 19 105–113. 10.1016/j.yebeh.2010.06.035 PubMed DOI
Lovatt D., Xu Q., Liu W., Takano T., Smith N. A., Schnermann J., et al. (2012). Neuronal adenosine release, and not astrocytic ATP release, mediates feedback inhibition of excitatory activity. Proc. Natl. Acad. Sci. U.S.A. 109 6265–6270. 10.1073/pnas.1120997109 PubMed DOI PMC
Lux H. D., Heinemann U., Dietzel I. (1986). Ionic changes and alterations in the size of the extracellular space during epileptic activity. Adv. Neurol. 44 619–639. PubMed
Ma H., Zhao M., Schwartz T. H. (2013). Dynamic neurovascular coupling and uncoupling during ictal onset, propagation, and termination revealed by simultaneous in vivo optical imaging of neural activity and local blood volume. Cereb. Cortex 23 885–899. 10.1093/cercor/bhs079 PubMed DOI PMC
Malinska D., Kulawiak B., Kudin A. P., Kovacs R., Huchzermeyer C., Kann O., et al. (2010). Complex III-dependent superoxide production of brain mitochondria contributes to seizure-related ROS formation. Biochim. Biophys. Acta 1797 1163–1170. 10.1016/j.bbabio.2010.03.001 PubMed DOI
McCormack J. G., Halestrap A. P., Denton R. M. (1990). Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol. Rev. 70 391–425. 10.1152/physrev.1990.70.2.391 PubMed DOI
Meldrum B. S. (2002). Concept of activity-induced cell death in epilepsy: historical and contemporary perspectives. Prog. Brain Res. 135 3–11. 10.1016/S0079-6123(02)35003-9 PubMed DOI
Meric P., Barrere B., Peres M., Gillet B., Berenger G., Beloeil J. C., et al. (1994). Effects of kainate-induced seizures on cerebral metabolism: a combined 1H and 31P NMR study in rat. Brain Res. 638 53–60. 10.1016/0006-8993(94)90632-7 PubMed DOI
Milesi S., Boussadia B., Plaud C., Catteau M., Rousset M. C., De Bock F., et al. (2014). Redistribution of PDGFRβ cells and NG2DsRed pericytes at the cerebrovasculature after status epilepticus. Neurobiol. Dis. 71 151–158. 10.1016/j.nbd.2014.07.010 PubMed DOI PMC
Mishra A., Reynolds J. P., Chen Y., Gourine A. V., Rusakov D. A., Attwell D. (2016). Astrocytes mediate neurovascular signaling to capillary pericytes but not to arterioles. Nat. Neurosci. 19 1619–1627. 10.1038/nn.4428 PubMed DOI PMC
Mishra C. B., Kumari S., Angeli A., Bua S., Tiwari M., Supuran C. T. (2018). Discovery of benzenesulfonamide derivatives as carbonic anhydrase inhibitors with effective anticonvulsant action: design, synthesis, and pharmacological evaluation. J. Med. Chem. 61 3151–3165. 10.1021/acs.jmedchem.8b00208 PubMed DOI
Mogul D. J., Adams M. E., Fox A. P. (1993). Differential activation of adenosine receptors decreases N-type but potentiates P-type Ca2 + current in hippocampal CA3 neurons. Neuron 10 327–334. 10.1016/0896-6273(93)90322-I PubMed DOI
Montagne A., Nikolakopoulou A. M., Zhao Z., Sagare A. P., Si G., Lazic D., et al. (2018). Pericyte degeneration causes white matter dysfunction in the mouse central nervous system. Nat. Med. 24 326–337. 10.1038/nm.4482 PubMed DOI PMC
Mookerjee S. A., Goncalves R. L. S., Gerencser A. A., Nicholls D. G., Brand M. D. (2015). The contributions of respiration and glycolysis to extracellular acid production. Biochim. Biophys. Acta 1847 171–181. 10.1016/j.bbabio.2014.10.005 PubMed DOI
Morin-Brureau M., Lebrun A., Rousset M. C., Fagni L., Bockaert J., de Bock F., et al. (2011). Epileptiform activity induces vascular remodeling and zonula occludens 1 downregulation in organotypic hippocampal cultures: role of VEGF signaling pathways. J. Neurosci. 31 10677–10688. 10.1523/JNEUROSCI.5692-10.2011 PubMed DOI PMC
Moser K. V., Schmidt-Kastner R., Hinterhuber H., Humpel C. (2003). Brain capillaries and cholinergic neurons persist in organotypic brain slices in the absence of blood flow. Eur. J. Neurosci. 18 85–94. 10.1046/j.1460-9568.2003.02728.x PubMed DOI
Nagase M., Takahashi Y., Watabe A. M., Kubo Y., Kato F. (2014). On-site energy supply at synapses through monocarboxylate transporters maintains excitatory synaptic transmission. J. Neurosci. 34 2605–2617. 10.1523/JNEUROSCI.4687-12.2014 PubMed DOI PMC
Nicholls D. G. (2017). Brain mitochondrial calcium transport: origins of the set-point concept and its application to physiology and pathology. Neurochem. Int. 109 5–12. 10.1016/j.neuint.2016.12.018 PubMed DOI
Nilsson B., Rehncrona S., Siesjö B. K. (1978). Coupling of cerebral metabolism and blood flow in epileptic seizures, hypoxia and hypoglycaemia. Ciba Found. Symp. 56 199–218. PubMed
Otáhal J., Folbergrová J., Kovacs R., Kunz W. S., Maggio N. (2014). Epileptic focus and alteration of metabolism. Int. Rev. Neurobiol. 114 209–243. 10.1016/B978-0-12-418693-4.00009-1 PubMed DOI
Parfenova H., Carratu P., Tcheranova D., Fedinec A., Pourcyrous M., Leffler C. W. (2005). Epileptic seizures cause extended postictal cerebral vascular dysfunction that is prevented by HO-1 overexpression. Am. J. Physiol. Heart Circ. Physiol. 288 H2843–H2850. 10.1152/ajpheart.01274.2004 PubMed DOI
Parfenova H., Leffler C. W., Basuroy S., Liu J., Fedinec A. L. (2012). Antioxidant roles of heme oxygenase, carbon monoxide, and bilirubin in cerebral circulation during seizures. J. Cereb. Blood Flow Metab. 32 1024–1034. 10.1038/jcbfm.2012.13 PubMed DOI PMC
Pavlov I., Kaila K., Kullmann D. M., Miles R. (2013). Cortical inhibition, pH and cell excitability in epilepsy: what are optimal targets for antiepileptic interventions? J. Physiol. 591 765–774. 10.1113/jphysiol.2012.237958 PubMed DOI PMC
Pellerin L., Magistretti P. J. (2012). Sweet sixteen for ANLS. J. Cereb. Blood Flow Metab. 32 1152–1166. 10.1038/jcbfm.2011 PubMed DOI PMC
Peppiatt C. M., Howarth C., Mobbs P., Attwell D. (2006). Bidirectional control of CNS capillary diameter by pericytes. Nature 443 700–704. 10.1038/nature05193 PubMed DOI PMC
Petzold G. C., Murthy V. N. (2011). Role of astrocytes in neurovascular coupling. Neuron 71 782–797. 10.1016/j.neuron.2011.08.009 PubMed DOI
Pfleger L. (1880). Beobachtungen uber schrumpfung und skierose des ammonshorns bei epilepsie. Allg. Z. Psychiatr. 36 359–365.
Pierre K., Pellerin L. (2005). Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J. Neurochem. 94 1–14. 10.1111/j.1471-4159.2005.03168.x PubMed DOI
Pietersen A. N., Lancaster D. M., Patel N., Hamilton J. B., Vreugdenhil M. (2009). Modulation of gamma oscillations by endogenous adenosine through A1 and A2A receptors in the mouse hippocampus. Neuropharmacology 56 481–492. 10.1016/j.neuropharm.2008.10.001 PubMed DOI
Piilgaard H., Lauritzen M. (2009). Persistent increase in oxygen consumption and impaired neurovascular coupling after spreading depression in rat neocortex. J. Cereb. Blood Flow Metab. 29 1517–1527. 10.1038/jcbfm.2009.73 PubMed DOI
Pinard E., Tremblay E., Ben-Ari Y., Seylaz J. (1984). Blood flow compensates oxygen demand in the vulnerable CA3 region of the hippocampus during kainate-induced seizures. Neuroscience 13 1039–1049. 10.1016/0306-4522(84)90287-2 PubMed DOI
Popova I., Malkov A., Ivanov A. I., Samokhina E., Buldakova S., Gubkina O., et al. (2017). Metabolic correction by pyruvate halts acquired epilepsy in multiple rodent models. Neurobiol. Dis. 106 244–254. 10.1016/j.nbd.2017.07.012 PubMed DOI
Pumain R., Ahmed M. S., Kurcewicz I., Trottier S., Louvel J., Turak B., et al. (2008). Lability of GABAA receptor function in human partial epilepsy: possible relationship to hypometabolism. Epilepsia 49(Suppl. 8), 87–90. 10.1111/j.1528-1167.2008.01845.x PubMed DOI
Rancillac A., Geoffroy H., Rossier J. (2012). Impaired neurovascular coupling in the APPxPS1 mouse model of Alzheimer’s disease. Curr. Alzheimer Res. 9 1221–1230. 10.2174/156720512804142859 PubMed DOI
Reiss W. G., Oles K. S. (1996). Acetazolamide in the treatment of seizures. Ann. Pharmacother. 30 514–519. 10.1177/106002809603000515 PubMed DOI
Rouach N., Koulakoff A., Abudara V., Willecke K., Giaume C. (2008). Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322 1551–1555. 10.1126/science.1164022 PubMed DOI
Rowley S., Patel M. (2013). Mitochondrial involvement and oxidative stress in temporal lobe epilepsy. Free Radic. Biol. Med. 62 121–131. 10.1016/j.freeradbiomed.2013.02.002 PubMed DOI PMC
Rueda C. B., Llorente-Folch I., Amigo I., Contreras L., González-Sánchez P., Martínez-Valero P., et al. (2014). Ca(2 + ) regulation of mitochondrial function in neurons. Biochim. Biophys. Acta 1837 1617–1624. 10.1016/j.bbabio.2014.04.010 PubMed DOI
Ruusuvuori E., Kaila K. (2014). Carbonic anhydrases and brain pH in the control of neuronal excitability. Subcell Biochem. 75 271–290. 10.1007/978-94-007-7359-2_14 PubMed DOI
Sada N., Lee S., Katsu T., Otsuki T., Inoue T. (2015). Epilepsy treatment. Targeting LDH enzymes with a stiripentol analog to treat epilepsy. Science 347 1362–1367. 10.1126/science.aaa1299 PubMed DOI
Samoilova M., Weisspapir M., Abdelmalik P., Velumian A. A., Carlen P. L. (2010). Chronic in vitro ketosis is neuroprotective but not anti-convulsant. J. Neurochem. 113 826–835. 10.1111/j.1471-4159.2010.06645.x PubMed DOI
Samokhina E., Popova I., Malkov A., Ivanov A. I., Papadia D., Osypov A., et al. (2017). Chronic inhibition of brain glycolysis initiates epileptogenesis. J. Neurosci. Res. 95 2195–2206. 10.1002/jnr.24019 PubMed DOI
Schneider J., Berndt N., Papageorgiou I. E., Maurer J., Bulik S., Both M., et al. (2017). Local oxygen homeostasis during various neuronal network activity states in the mouse hippocampus. J. Cereb. Blood Flow Metab. 10.1177/0271678X17740091 [Epub ahead of print]. PubMed DOI PMC
Schoknecht K., Berndt N., Rösner J., Heinemann U., Dreier J. P., Kovács R., et al. (2017). Event-Associated oxygen consumption rate increases ca. five-fold when interictal activity transforms into seizure-like events In Vitro. Int. J. Mol. Sci. 18:E1925. 10.3390/ijms18091925 PubMed DOI PMC
Schridde U., Khubchandani M., Motelow J. E., Sanganahalli B. G., Hyder F., Blumenfeld H. (2008). Negative BOLD with large increases in neuronal activity. Cereb. Cortex 18 1814–1827. 10.1093/cercor/bhm208 PubMed DOI PMC
Schuchmann S., Albrecht D., Heinemann U., von Bohlen, Halbach O. (2002). Nitric oxide modulates low-Mg2 + -induced epileptiform activity in rat hippocampal-entorhinal cortex slices. Neurobiol. Dis. 11 96–105. 10.1006/nbdi.2002.0533 PubMed DOI
Schuchmann S., Buchheim K., Meierkord H., Heinemann U. (1999). A relative energy failure is associated with low-Mg2 + but not with 4-aminopyridine induced seizure-like events in entorhinal cortex. J. Neurophysiol. 81 399–403. 10.1152/jn.1999.81.1.399 PubMed DOI
Schuchmann S., Kovács R., Kann O., Heinemann U., Buchheim K. (2001). Monitoring NAD(P)H autofluorescence to assess mitochondrial metabolic functions in rat hippocampal-entorhinal cortex slices. Brain Res. Brain Res. Protoc. 7 267–276. 10.1016/S1385-299X(01)00080-0 PubMed DOI
Schulz S. B., Klaft Z. J., Rösler A. R., Heinemann U., Gerevich Z. (2012). Purinergic P2X, P2Y and adenosine receptors differentially modulate hippocampal gamma oscillations. Neuropharmacology 62 914–924. 10.1016/j.neuropharm.2011.09.024 PubMed DOI
Shao L. R., Stafstrom C. E. (2017). Glycolytic inhibition by 2-deoxy-d-glucose abolishes both neuronal and network bursts in an in vitro seizure model. J. Neurophysiol. 118 103–113. 10.1152/jn.00100.2017 PubMed DOI PMC
Sinning A., Hübner C. A. (2013). Minireview: pH and synaptic transmission. FEBS Lett. 587 1923–1928. 10.1016/j.febslet.2013.04.045 PubMed DOI
Sotelo-Hitschfeld T., Niemeyer M. I., Mächler P., Ruminot I., Lerchundi R., Wyss M. T., et al. (2015). Channel-mediated lactate release by K+-stimulated astrocytes. J. Neurosci. 35 4168–4178. 10.1523/JNEUROSCI.5036-14.2015 PubMed DOI PMC
Stafstrom C. E., Ockuly J. C., Murphree L., Valley M. T., Roopra A., Sutula T. P. (2009). Anticonvulsant and antiepileptic actions of 2-deoxy-D-glucose in epilepsy models. Ann. Neurol. 65 435–447. 10.1002/ana.21603 PubMed DOI PMC
Stafstrom C. E., Roopra A., Sutula T. P. (2008). Seizure suppression via glycolysis inhibition with 2-deoxy-D-glucose (2DG). Epilepsia 49(Suppl. 8), 97–100. 10.1111/j.1528-1167.2008.01848.x PubMed DOI
Streijger F., Scheenen W. J., van Luijtelaar G., Oerlemans F., Wieringa B., Van der Zee C. E. (2010). Complete brain-type creatine kinase deficiency in mice blocks seizure activity and affects intracellular calcium kinetics. Epilepsia 51 79–88. 10.1111/j.1528-1167.2009.02182.x PubMed DOI
Suh M., Bahar S., Mehta A. D., Schwartz T. H. (2005). Temporal dependence in uncoupling of blood volume and oxygenation during interictal epileptiform events in rat neocortex. J. Neurosci. 25 68–77. 10.1523/JNEUROSCI.2823-04.2005 PubMed DOI PMC
Szewczyk A., Skalska J., Głab M., Kulawiak B., Malińska D., Koszela-Piotrowska I., et al. (2006). Mitochondrial potassium channels: from pharmacology to function. Biochim. Biophys. Acta 1757 715–720. 10.1016/j.bbabio.2006.05.002 PubMed DOI
Szybala C., Pritchard E. M., Lusardi T. A., Li T., Wilz A., Kaplan D. L., et al. (2009). Antiepileptic effects of silk-polymer based adenosine release in kindled rats. Exp. Neurol. 219 126–135. 10.1016/j.expneurol.2009.05.018 PubMed DOI PMC
Takano T., Tian G. F., Peng W., Lou N., Lovatt D., Hansen A. J., et al. (2007). Cortical spreading depression causes and coincides with tissue hypoxia. Nat. Neurosci. 10 754–762. 10.1038/nn1902 PubMed DOI
Tang C. M., Dichter M., Morad M. (1990). Modulation of the N-methyl-D-aspartate channel by extracellular H +. Proc. Natl. Acad. Sci. U.S.A. 87 6445–6449. 10.1073/pnas.87.16.6445 PubMed DOI PMC
Thomsen K., Piilgaard H., Gjedde A., Bonvento G., Lauritzen M. (2009). Principal cell spiking, postsynaptic excitation, and oxygen consumption in the rat cerebellar cortex. J. Neurophysiol. 102 1503–1512. 10.1152/jn.00289.2009 PubMed DOI
Thornton R. C., Rodionov R., Laufs H., Vulliemoz S., Vaudano A., Carmichael D., et al. (2010). Imaging haemodynamic changes related to seizures: comparison of EEG-based general linear model, independent component analysis of fMRI and intracranial EEG. Neuroimage 53 196–205. 10.1016/j.neuroimage.2010.05.064 PubMed DOI
Tolner E. A., Hochman D. W., Hassinen P., Otáhal J., Gaily E., Haglund M. M., et al. (2011). Five percent CO2 is a potent, fast-acting inhalation anticonvulsant. Epilepsia 52 104–114. 10.1111/j.1528-1167.2010.02731.x PubMed DOI PMC
Trussell L. O., Jackson M. B. (1987). Dependence of an adenosine-activated potassium current on a GTP-binding protein in mammalian central neurons. J. Neurosci. 7 3306–3316. 10.1523/JNEUROSCI.07-10-03306.1987 PubMed DOI PMC
Tyvaert L., LeVan P., Dubeau F., Gotman J. (2009). Noninvasive dynamic imaging of seizures in epileptic patients. Hum. Brain Mapp. 30 3993–4011. 10.1002/hbm.20824 PubMed DOI PMC
Urban A., Golgher L., Brunner C., Gdalyahu A., Har-Gil H., Kain D., et al. (2017). Understanding the neurovascular unit at multiple scales: advantages and limitations of multi-photon and functional ultrasound imaging. Adv. Drug Deliv. Rev. 119 73–100. 10.1016/j.addr.2017.07.018 PubMed DOI
Van Gompel J. J., Bower M. R., Worrell G. A., Stead M., Chang S. Y., Goerss S. J., et al. (2014). Increased cortical extracellular adenosine correlates with seizure termination. Epilepsia 55 233–244. 10.1111/epi.12511 PubMed DOI PMC
Vielhaber S., Von Oertzen J. H., Kudin A. F., Schoenfeld A., Menzel C., Biersack H. J., et al. (2003). Correlation of hippocampal glucose oxidation capacity and interictal FDG-PET in temporal lobe epilepsy. Epilepsia 44 193–199. 10.1046/j.1528-1157.2003.38102.x PubMed DOI
Wei A. C., Aon M. A., O’Rourke B., Winslow R. L., Cortassa S. (2011). Mitochondrial energetics, pH regulation, and ion dynamics: a computational-experimental approach. Biophys. J. 100 2894–2903. 10.1016/j.bpj.2011.05.027 PubMed DOI PMC
Wemmie J. A., Taugher R. J., Kreple C. J. (2013). Acid-sensing ion channels in pain and disease. Nat. Rev. Neurosci. 14 461–471. 10.1038/nrn3529 PubMed DOI PMC
Winkler E. A., Bell R. D., Zlokovic B. V. (2011). Central nervous system pericytes in health and disease. Nat. Neurosci. 14 1398–1405. 10.1038/nn.2946 PubMed DOI PMC
Xiong Z. Q., Saggau P., Stringer J. L. (2000). Activity-dependent intracellular acidification correlates with the duration of seizure activity. J. Neurosci. 20 1290–1296. 10.1523/JNEUROSCI.20-04-01290.2000 PubMed DOI PMC
Yaseen M. A., Sutin J., Wu W., Fu B., Uhlirova H., Devor A., et al. (2017). Fluorescence lifetime microscopy of NADH distinguishes alterations in cerebral metabolism in vivo. Biomed. Opt. Express. 8 2368–2385. 10.1364/BOE.8.002368 PubMed DOI PMC
Yemisci M., Gursoy-Ozdemir Y., Vural A., Can A., Topalkara K., Dalkara T. (2009). Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat. Med. 15 1031–1037. 10.1038/nm.2022 PubMed DOI
Young D., Dragunow M. (1994). Status epilepticus may be caused by loss of adenosine anticonvulsant mechanisms. Neuroscience 58 245–261. 10.1016/0306-4522(94)90032-9 PubMed DOI
Zhao M., Ma H., Suh M., Schwartz T. H. (2009). Spatiotemporal dynamics of perfusion and oximetry during ictal discharges in the rat neocortex. J. Neurosci. 29 2814–2823. 10.1523/JNEUROSCI.4667-08.2009 PubMed DOI PMC
Zhao M., Nguyen J., Ma H., Nishimura N., Schaffer C. B., Schwartz T. H. (2011). Preictal and ictal neurovascular and metabolic coupling surrounding a seizure focus. J. Neurosci. 31 13292–13300. 10.1523/JNEUROSCI.2597-11.2011 PubMed DOI PMC
Ziemann A. E., Schnizler M. K., Albert G. W., Severson M. A., Howard M. A., III, Welsh M. J., et al. (2008). Seizure termination by acidosis depends on ASIC1a. Nat. Neurosci. 11 816–822. 10.1038/nn.2132 PubMed DOI PMC
Zonta M., Angulo M. C., Gobbo S., Rosengarten B., Hossmann K. A., Pozzan T., et al. (2003). Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat. Neurosci. 6 43–50. 10.1038/nn980 PubMed DOI
Zsurka G., Kunz W. S. (2015). Mitochondrial dysfunction and seizures: the neuronal energy crisis. Lancet Neurol. 14 956–966. 10.1016/S1474-4422(15)00148-9 PubMed DOI
Zubler F., Steimer A., Gast H., Schindler K. A. (2014). Seizure termination. Int. Rev. Neurobiol. 114 187–207. 10.1016/B978-0-12-418693-4.00008-X PubMed DOI
Sulforaphane Ameliorates Metabolic Changes Associated With Status Epilepticus in Immature Rats