Somatosensory lateral inhibition processes modulate motor response inhibition - an EEG source localization study
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28667296
PubMed Central
PMC5493651
DOI
10.1038/s41598-017-04887-z
PII: 10.1038/s41598-017-04887-z
Knihovny.cz E-zdroje
- MeSH
- analýza rozptylu MeSH
- dospělí MeSH
- elektroencefalografie MeSH
- evokované potenciály MeSH
- exekutivní funkce * MeSH
- lidé MeSH
- mladý dospělý MeSH
- mozková kůra fyziologie MeSH
- pohybová aktivita * MeSH
- psychomotorický výkon * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Motor inhibitory control is a central executive function, but only recently the importance of perceptual mechanisms for these processes has been focused. It is elusive whether basic mechanisms governing sensory perception affect motor inhibitory control. We examine whether sensory lateral inhibition (LI) processes modulate motor inhibitory control using a system neurophysiological approach combining EEG signal decomposition with source localization methods in a somatosensory GO/NOGO task. The results show that inter-individual variations in the strength of LI effects predominantly affect processes when information needs to be integrated between cerebral hemispheres. If information needs to be integrated between hemispheres, strong sensory suppression will lead to more impulsive errors. Importantly, the neurophysiological data suggest that not purely perceptual or motor processes are affected. Rather, LI affects the response selection level and modulates processes of stimulus categorization. This is associated with activity modulations in the posterior parietal cortex. The results suggest that when sensory suppression is high and when information needs to be integrated across hemispheres, these processes are less efficient, which likely leads to worse motor inhibitory control. The results show how basis principles modulating perceptual processes affect subsequent motor inhibitory control processes.
Experimental Neurobiology National Institute of Mental Health Klecany Czech Republic
MS Centre Dresden Faculty of Medicine of the TU Dresden TU Dresden Germany
Zobrazit více v PubMed
Diamond A. Executive functions. Annu. Rev. Psychol. 2013;64:135–168. doi: 10.1146/annurev-psych-113011-143750. PubMed DOI PMC
Bari A, Robbins TW. Inhibition and impulsivity: behavioral and neural basis of response control. Prog. Neurobiol. 2013;108:44–79. doi: 10.1016/j.pneurobio.2013.06.005. PubMed DOI
Chmielewski WX, Mückschel M, Stock A-K, Beste C. The impact of mental workload on inhibitory control subprocesses. NeuroImage. 2015;112:96–104. doi: 10.1016/j.neuroimage.2015.02.060. PubMed DOI
Boehler CN, et al. Sensory MEG responses predict successful and failed inhibition in a stop-signal task. Cereb. Cortex N. Y. N 1991. 2009;19:134–145. PubMed
Chmielewski WX, Beste C. Perceptual conflict during sensorimotor integration processes - a neurophysiological study in response inhibition. Sci. Rep. 2016;6:26289. doi: 10.1038/srep26289. PubMed DOI PMC
Chmielewski, W. X. & Beste, C. Testing interactive effects of automatic and conflict control processes during response inhibition - A system neurophysiological study. NeuroImage, doi:10.1016/j.neuroimage.2016.10.015 (2016). PubMed
Stock A-K, Popescu F, Neuhaus AH, Beste C. Single-subject prediction of response inhibition behavior by event-related potentials. J. Neurophysiol. 2016;115:1252–1262. doi: 10.1152/jn.00969.2015. PubMed DOI PMC
Cardini F, Longo MR, Haggard P. Vision of the body modulates somatosensory intracortical inhibition. Cereb. Cortex N. Y. N 1991. 2011;21:2014–2022. PubMed
Jerath R, Cearley SM, Barnes VA, Nixon-Shapiro E. How lateral inhibition and fast retinogeniculo-cortical oscillations create vision: A new hypothesis. Med. Hypotheses. 2016;96:20–29. doi: 10.1016/j.mehy.2016.09.015. PubMed DOI
Urban NN. Lateral inhibition in the olfactory bulb and in olfaction. Physiol. Behav. 2002;77:607–612. doi: 10.1016/S0031-9384(02)00895-8. PubMed DOI
Bodmer B, Beste C. On the dependence of response inhibition processes on sensory modality: Response Inhibition Processes and Sensory Modality. Hum. Brain Mapp. 2017;38:1941–1951. doi: 10.1002/hbm.23495. PubMed DOI PMC
Pang CY, Mueller MM. Competitive interactions in somatosensory cortex for concurrent vibrotactile stimulation between and within hands. Biol. Psychol. 2015;110:91–99. doi: 10.1016/j.biopsycho.2015.07.002. PubMed DOI
Severens M, Farquhar J, Desain P, Duysens J, Gielen C. Transient and steady-state responses to mechanical stimulation of different fingers reveal interactions based on lateral inhibition. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2010;121:2090–2096. doi: 10.1016/j.clinph.2010.05.016. PubMed DOI
Hoechstetter K, et al. Interaction of Tactile Input in the Human Primary and Secondary Somatosensory Cortex–A Magnetoencephalographic Study. NeuroImage. 2001;14:759–767. doi: 10.1006/nimg.2001.0855. PubMed DOI
Ishibashi H, et al. Differential interaction of somatosensory inputs in the human primary sensory cortex: a magnetoencephalographic study. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2000;111:1095–1102. doi: 10.1016/S1388-2457(00)00266-2. PubMed DOI
Tanosaki M, et al. Neural mechanisms for generation of tactile interference effects on somatosensory evoked magnetic fields in humans. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2002;113:672–680. doi: 10.1016/S1388-2457(02)00052-4. PubMed DOI
Dippel, G., Chmielewski, W., Mückschel, M. & Beste, C. Response mode-dependent differences in neurofunctional networks during response inhibition: an EEG-beamforming study. Brain Struct. Funct. doi:10.1007/s00429-015-1148-y (2015). PubMed
Quetscher C, et al. Striatal GABA-MRS predicts response inhibition performance and its cortical electrophysiological correlates. Brain Struct. Funct. 2015;220:3555–3564. doi: 10.1007/s00429-014-0873-y. PubMed DOI PMC
Beste, C., Stock, A.-K., Epplen, J. T. & Arning, L. Dissociable electrophysiological subprocesses during response inhibition are differentially modulated by dopamine D1 and D2 receptors. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. doi:10.1016/j.euroneuro.2016.03.002 (2016). PubMed
Huster RJ, Enriquez-Geppert S, Lavallee CF, Falkenstein M, Herrmann CS. Electroencephalography of response inhibition tasks: functional networks and cognitive contributions. Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. 2013;87:217–233. PubMed
Ouyang G, Sommer W, Zhou C. Updating and validating a new framework for restoring and analyzing latency-variable ERP components from single trials with residue iteration decomposition (RIDE) Psychophysiology. 2015;52:839–856. doi: 10.1111/psyp.12411. PubMed DOI
Ouyang G, Schacht A, Zhou C, Sommer W. Overcoming limitations of the ERP method with Residue Iteration Decomposition (RIDE): A demonstration in go/no-go experiments. Psychophysiology. 2013;50:253–265. doi: 10.1111/psyp.12004. PubMed DOI
Ouyang G, Herzmann G, Zhou C, Sommer W. Residue iteration decomposition (RIDE): A new method to separate ERP components on the basis of latency variability in single trials. Psychophysiology. 2011;48:1631–1647. doi: 10.1111/j.1469-8986.2011.01269.x. PubMed DOI
Wolff, N., Mückschel, M. & Beste, C. Neural mechanisms and functional neuroanatomical networks during memory and cue-based task switching as revealed by residue iteration decomposition (RIDE) based source localization. Brain Struct. Funct. doi:10.1007/s00429-017-1437-8 (2017). PubMed
Mückschel M, Chmielewski W, Ziemssen T, Beste C. The norepinephrine system shows information-content specific properties during cognitive control - Evidence from EEG and pupillary responses. NeuroImage. 2017;149:44–52. doi: 10.1016/j.neuroimage.2017.01.036. PubMed DOI
Verleger R, Metzner MF, Ouyang G, Śmigasiewicz K, Zhou C. Testing the stimulus-to-response bridging function of the oddball-P3 by delayed response signals and residue iteration decomposition (RIDE) NeuroImage. 2014;100:271–280. doi: 10.1016/j.neuroimage.2014.06.036. PubMed DOI
Mückschel, M., Gohil, K., Ziemssen, T. & Beste, C. The norepinephrine system and its relevance for multi-component behavior. NeuroImage doi:10.1016/j.neuroimage.2016.10.007 (2016). PubMed
Wessel JR, Aron AR. It’s not too late: the onset of the frontocentral P3 indexes successful response inhibition in the stop-signal paradigm. Psychophysiology. 2015;52:472–480. doi: 10.1111/psyp.12374. PubMed DOI PMC
Andersen RA, Buneo CA. Intentional maps in posterior parietal cortex. Annu. Rev. Neurosci. 2002;25:189–220. doi: 10.1146/annurev.neuro.25.112701.142922. PubMed DOI
Gottlieb J. From thought to action: the parietal cortex as a bridge between perception, action, and cognition. Neuron. 2007;53:9–16. doi: 10.1016/j.neuron.2006.12.009. PubMed DOI
Fokin VA, et al. Localization of human cortical areas activated on perception of ordered and chaotic images. Neurosci. Behav. Physiol. 2008;38:677–685. doi: 10.1007/s11055-008-9033-2. PubMed DOI
Ocklenburg S, Güntürkün O, Beste C. Lateralized neural mechanisms underlying the modulation of response inhibition processes. NeuroImage. 2011;55:1771–1778. doi: 10.1016/j.neuroimage.2011.01.035. PubMed DOI
Takeichi H, et al. Comprehension of degraded speech sounds with m-sequence modulation: an fMRI study. NeuroImage. 2010;49:2697–2706. doi: 10.1016/j.neuroimage.2009.10.063. PubMed DOI
Borich MR, Brodie SM, Gray WA, Ionta S, Boyd LA. Understanding the role of the primary somatosensory cortex: Opportunities for rehabilitation. Neuropsychologia. 2015;79:246–255. doi: 10.1016/j.neuropsychologia.2015.07.007. PubMed DOI PMC
Ouyang G, Sommer W, Zhou C. A toolbox for residue iteration decomposition (RIDE)–A method for the decomposition, reconstruction, and single trial analysis of event related potentials. J. Neurosci. Methods. 2015;250:7–21. doi: 10.1016/j.jneumeth.2014.10.009. PubMed DOI
Barber AD, Caffo BS, Pekar JJ, Mostofsky SH. Developmental changes in within- and between-network connectivity between late childhood and adulthood. Neuropsychologia. 2013;51:156–167. doi: 10.1016/j.neuropsychologia.2012.11.011. PubMed DOI PMC
Fan L-Y, Gau SS-F, Chou T-L. Neural correlates of inhibitory control and visual processing in youths with attention deficit hyperactivity disorder: a counting Stroop functional MRI study. Psychol. Med. 2014;44:2661–2671. doi: 10.1017/S0033291714000038. PubMed DOI
Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn. Sci. 2014;18:177–185. doi: 10.1016/j.tics.2013.12.003. PubMed DOI
Yeterian EH, Pandya DN, Tomaiuolo F, Petrides M. The cortical connectivity of the prefrontal cortex in the monkey brain. Cortex. 2012;48:58–81. doi: 10.1016/j.cortex.2011.03.004. PubMed DOI PMC
Kaas JH. The functional organization of somatosensory cortex in primates. Ann. Anat. - Anat. Anz. 1993;175:509–518. doi: 10.1016/S0940-9602(11)80212-8. PubMed DOI
Ackerley R, Kavounoudias A. The role of tactile afference in shaping motor behaviour and implications for prosthetic innovation. Neuropsychologia. 2015;79:192–205. doi: 10.1016/j.neuropsychologia.2015.06.024. PubMed DOI
Francis ST, et al. fMRI of the Responses to Vibratory Stimulation of Digit Tips. NeuroImage. 2000;11:188–202. doi: 10.1006/nimg.2000.0541. PubMed DOI
Harrington GS, Hunter Downs J., III FMRI mapping of the somatosensory cortex with vibratory stimuli. Brain Res. 2001;897:188–192. doi: 10.1016/S0006-8993(01)02139-4. PubMed DOI
Dieckhöfer A, et al. Transcranial direct current stimulation applied over the somatosensory cortex – Differential effect on low and high frequency SEPs. Clin. Neurophysiol. 2006;117:2221–2227. doi: 10.1016/j.clinph.2006.07.136. PubMed DOI
Vaseghi B, Zoghi M, Jaberzadeh S. Differential effects of cathodal transcranial direct current stimulation of prefrontal, motor and somatosensory cortices on cortical excitability and pain perception - a double-blind randomised sham-controlled study. Eur. J. Neurosci. 2015;42:2426–2437. doi: 10.1111/ejn.13043. PubMed DOI
Hilgenstock R, Weiss T, Huonker R, Witte OW. Behavioural and neurofunctional impact of transcranial direct current stimulation on somatosensory learning: tDCS and Somatosensory Learning. Hum. Brain Mapp. 2016;37:1277–1295. doi: 10.1002/hbm.23101. PubMed DOI PMC
Nunez PL, Pilgreen KL. The spline-Laplacian in clinical neurophysiology: a method to improve EEG spatial resolution. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 1991;8:397–413. PubMed
Tenke CE, Kayser J. Generator localization by current source density (CSD): Implications of volume conduction and field closure at intracranial and scalp resolutions. Clin. Neurophysiol. 2012;123:2328–2345. doi: 10.1016/j.clinph.2012.06.005. PubMed DOI PMC
Pascual-Marqui RD. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 2002;24(Suppl D):5–12. PubMed
Marco-Pallarés J, Grau C, Ruffini G. Combined ICA-LORETA analysis of mismatch negativity. NeuroImage. 2005;25:471–477. doi: 10.1016/j.neuroimage.2004.11.028. PubMed DOI
Sekihara K, Sahani M, Nagarajan SS. Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction. NeuroImage. 2005;25:1056–1067. doi: 10.1016/j.neuroimage.2004.11.051. PubMed DOI PMC
Fuchs M, Kastner J, Wagner M, Hawes S, Ebersole JS. A standardized boundary element method volume conductor model. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2002;113:702–712. doi: 10.1016/S1388-2457(02)00030-5. PubMed DOI
Mazziotta J, et al. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM) Philos. Trans. R. Soc. Lond. Ser. B. 2001;356:1293–1322. doi: 10.1098/rstb.2001.0915. PubMed DOI PMC
Dippel G, Beste C. A causal role of the right inferior frontal cortex in implementing strategies for multi-component behaviour. Nat. Commun. 2015;6:6587. doi: 10.1038/ncomms7587. PubMed DOI