Differences in serum IgA responses to HIV-1 gp41 in elite controllers compared to viral suppressors on highly active antiretroviral therapy
Language English Country United States Media electronic-ecollection
Document type Comparative Study, Journal Article
Grant support
U01 AI031834
NIAID NIH HHS - United States
U19 AI091031
NIAID NIH HHS - United States
UL1 TR000454
NCATS NIH HHS - United States
U01 AI034993
NIAID NIH HHS - United States
UL1 TR000004
NCATS NIH HHS - United States
U01 AI035004
NIAID NIH HHS - United States
R01 AI102718
NIAID NIH HHS - United States
KL2 TR001432
NCATS NIH HHS - United States
U01 AI034989
NIAID NIH HHS - United States
R01 AI046283
NIAID NIH HHS - United States
U01 AI034994
NIAID NIH HHS - United States
P30 AI027763
NIAID NIH HHS - United States
P01 AI074286
NIAID NIH HHS - United States
U01 HD032632
NICHD NIH HHS - United States
U01 AI042590
NIAID NIH HHS - United States
PubMed
28671952
PubMed Central
PMC5495342
DOI
10.1371/journal.pone.0180245
PII: PONE-D-17-11938
Knihovny.cz E-resources
- MeSH
- Antibody Affinity MeSH
- Adult MeSH
- Enzyme-Linked Immunosorbent Assay MeSH
- HIV Infections drug therapy immunology MeSH
- HIV Envelope Protein gp41 immunology MeSH
- HIV Antibodies biosynthesis MeSH
- Immunoglobulin A blood MeSH
- Immunoglobulin G blood MeSH
- Middle Aged MeSH
- Humans MeSH
- Antiretroviral Therapy, Highly Active * MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
- Names of Substances
- HIV Envelope Protein gp41 MeSH
- HIV Antibodies MeSH
- Immunoglobulin A MeSH
- Immunoglobulin G MeSH
Mechanisms responsible for natural control of human immunodeficiency type 1 (HIV) replication in elite controllers (EC) remain incompletely defined. To determine if EC generate high quality HIV-specific IgA responses, we used Western blotting to compare the specificities and frequencies of IgA to HIV antigens in serum of gender-, age- and race-matched EC and aviremic controllers (HC) and viremic noncontrollers (HN) on highly active antiretroviral therapy (HAART). Concentrations and avidity of IgA to HIV antigens were measured using ELISA or multiplex assays. Measurements for IgG were performed in parallel. EC were found to have stronger p24- and V1V2-specific IgG responses than HN, but there were no IgG differences for EC and HC. In contrast, IgA in EC serum bound more frequently to gp160 and gag proteins than IgA in HC or HN. The avidity of anti-gp41 IgA was also greater in EC, and these subjects had stronger IgA responses to the gp41 heptad repeat region 1 (HR1), a reported target of anti-bacterial RNA polymerase antibodies that cross react with gp41. However, EC did not demonstrate greater IgA responses to E. coli RNA polymerase or to peptides containing the shared LRAI sequence, suggesting that most of their HR1-specific IgA antibodies were not induced by intestinal microbiota. In both EC and HAART recipients, the concentrations of HIV-specific IgG were greater than HIV-specific IgA, but their avidities were comparable, implying that they could compete for antigen. Exceptions were C1 peptides and V1V2 loops. IgG and IgA responses to these antigens were discordant, with IgG reacting to V1V2, and IgA reacting to C1, especially in EC. Interestingly, EC with IgG hypergammaglobulinemia had greater HIV-specific IgA and IgG responses than EC with normal total IgG levels. Heterogeneity in EC antibody responses may therefore be due to a more focused HIV-specific B cell response in some of these individuals. Overall, these data suggest that development of HIV-specific IgA responses and affinity maturation of anti-gp41 IgA antibodies occurs to a greater extent in EC than in subjects on HAART. Future studies will be required to determine if IgA antibodies in EC may contribute in control of viral replication.
Department of Biomedical Sciences Iowa State University Ames IA United States of America
Department of Medicine Georgetown University Washington D C United States of America
Department of Pediatrics University of Southern California Los Angeles CA United States of America
Departments of Pathology and Medicine SUNY Downstate Brooklyn NY United States of America
See more in PubMed
Theze J, Chakrabarti LA, Vingert B, Porichis F, Kaufmann DE. HIV controllers: a multifactorial phenotype of spontaneous viral suppression. Clin Immunol. 2011;141(1):15–30. doi: 10.1016/j.clim.2011.07.007 PubMed DOI PMC
Walker BD, Yu XG. Unravelling the mechanisms of durable control of HIV-1. Nat Rev Immunol. 2013;13(7):487–98. doi: 10.1038/nri3478 PubMed DOI
Ferre AL, Hunt PW, McConnell DH, Morris MM, Garcia JC, Pollard RB, et al. HIV controllers with HLA-DRB1*13 and HLA-DQB1*06 alleles have strong, polyfunctional mucosal CD4+ T-cell responses. J Virol. 2010;84(21):11020–9. doi: 10.1128/JVI.00980-10 PubMed DOI PMC
Vingert B, Benati D, Lambotte O, de Truchis P, Slama L, Jeannin P, et al. HIV controllers maintain a population of highly efficient Th1 effector cells in contrast to patients treated in the long term. J Virol. 2012;86(19):10661–74. doi: 10.1128/JVI.00056-12 PubMed DOI PMC
Ferre AL, Lemongello D, Hunt PW, Morris MM, Garcia JC, Pollard RB, et al. Immunodominant HIV-specific CD8+ T-cell responses are common to blood and gastrointestinal mucosa, and Gag-specific responses dominate in rectal mucosa of HIV controllers. J Virol. 2010;84(19):10354–65. doi: 10.1128/JVI.00803-10 PubMed DOI PMC
Betts MR, Nason MC, West SM, De Rosa SC, Migueles SA, Abraham J, et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood. 2006;107(12):4781–9. doi: 10.1182/blood-2005-12-4818 PubMed DOI PMC
Pereyra F, Addo MM, Kaufmann DE, Liu Y, Miura T, Rathod A, et al. Genetic and immunologic heterogeneity among persons who control HIV infection in the absence of therapy. J Infect Dis. 2008;197(4):563–71. doi: 10.1086/526786 PubMed DOI
Brombin C, Diomede L, Tudor D, Drillet AS, Pastori C, Poli E, et al. A nonparametric procedure for defining a new humoral immunologic profile in a pilot study on HIV infected patients. PLoS One. 2013;8(3):e58768 doi: 10.1371/journal.pone.0058768 PubMed DOI PMC
Doria-Rose NA, Klein RM, Daniels MG, O'Dell S, Nason M, Lapedes A, et al. Breadth of human immunodeficiency virus-specific neutralizing activity in sera: clustering analysis and association with clinical variables. J Virol. 2010;84(3):1631–6. doi: 10.1128/JVI.01482-09 PubMed DOI PMC
Lambotte O, Ferrari G, Moog C, Yates NL, Liao HX, Parks RJ, et al. Heterogeneous neutralizing antibody and antibody-dependent cell cytotoxicity responses in HIV-1 elite controllers. AIDS. 2009;23(8):897–906. doi: 10.1097/QAD.0b013e328329f97d PubMed DOI PMC
Ackerman ME, Mikhailova A, Brown EP, Dowell KG, Walker BD, Bailey-Kellogg C, et al. Polyfunctional HIV-Specific Antibody Responses Are Associated with Spontaneous HIV Control. PLoS Pathog. 2016;12(1):e1005315 doi: 10.1371/journal.ppat.1005315 PubMed DOI PMC
Kozlowski PA, Chen D, Eldridge JH, Jackson S. Contrasting IgA and IgG neutralization capacities and responses to HIV type 1 gp120 V3 loop in HIV-infected individuals. AIDS Res Hum Retroviruses. 1994;10(7):813–22. doi: 10.1089/aid.1994.10.813 PubMed DOI
Burnett PR, VanCott TC, Polonis VR, Redfield RR, Birx DL. Serum IgA-mediated neutralization of HIV type 1. J Immunol. 1994;152(9):4642–8. PubMed
Tay MZ, Liu P, Williams LD, McRaven MD, Sawant S, Gurley TC, et al. Antibody-Mediated Internalization of Infectious HIV-1 Virions Differs among Antibody Isotypes and Subclasses. PLoS Pathog. 2016;12(8):e1005817 doi: 10.1371/journal.ppat.1005817 PubMed DOI PMC
Black KP, Cummins JE Jr., Jackson S. Serum and secretory IgA from HIV-infected individuals mediate antibody-dependent cellular cytotoxicity. Clin Immunol Immunopathol. 1996;81(2):182–90. PubMed
Yu X, Duval M, Lewis C, Gawron MA, Wang R, Posner MR, et al. Impact of IgA constant domain on HIV-1 neutralizing function of monoclonal antibody F425A1g8. J Immunol. 2013;190(1):205–10. doi: 10.4049/jimmunol.1201469 PubMed DOI PMC
Marthas ML, Van Rompay KK, Abbott Z, Earl P, Buonocore-Buzzelli L, Moss B, et al. Partial efficacy of a VSV-SIV/MVA-SIV vaccine regimen against oral SIV challenge in infant macaques. Vaccine. 2011;29(17):3124–37. doi: 10.1016/j.vaccine.2011.02.051 PubMed DOI PMC
Chamcha V, Kannanganat S, Gangadhara S, Nabi R, Kozlowski PA, Montefiori DC, et al. Strong, but age-dependent, protection elicited by a DNA/Modified vaccinia ankara simian immunodeficiency virus vaccine. Open Forum Infectious Diseases. 2016;in press. PubMed PMC
Adnan S, Reeves RK, Gillis J, Wong FE, Yu Y, Camp JV, et al. Persistent Low-Level Replication of SIVDeltanef Drives Maturation of Antibody and CD8 T Cell Responses to Induce Protective Immunity against Vaginal SIV Infection. PLoS Pathog. 2016;12(12):e1006104 doi: 10.1371/journal.ppat.1006104 PubMed DOI PMC
Kozlowski PA, Jackson S. Serum IgA subclasses and molecular forms in HIV infection: selective increases in monomer and apparent restriction of the antibody response to IgA1 antibodies mainly directed at env glycoproteins. AIDS Res Hum Retroviruses. 1992;8(10):1773–80. doi: 10.1089/aid.1992.8.1773 PubMed DOI
Mestecky J, Jackson S, Moldoveanu Z, Nesbit LR, Kulhavy R, Prince SJ, et al. Paucity of antigen-specific IgA responses in sera and external secretions of HIV-type 1-infected individuals. AIDS Res Hum Retroviruses. 2004;20(9):972–88. doi: 10.1089/aid.2004.20.972 PubMed DOI
Yates NL, Stacey AR, Nolen TL, Vandergrift NA, Moody MA, Montefiori DC, et al. HIV-1 gp41 envelope IgA is frequently elicited after transmission but has an initial short response half-life. Mucosal Immunol. 2013;6(4):692–703. doi: 10.1038/mi.2012.107 PubMed DOI PMC
Trama AM, Moody MA, Alam SM, Jaeger FH, Lockwood B, Parks R, et al. HIV-1 envelope gp41 antibodies can originate from terminal ileum B cells that share cross-reactivity with commensal bacteria. Cell Host Microbe. 2014;16(2):215–26. doi: 10.1016/j.chom.2014.07.003 PubMed DOI PMC
Brown TA, Murphy BR, Radl J, Haaijman JJ, Mestecky J. Subclass distribution and molecular form of immunoglobulin A hemagglutinin antibodies in sera and nasal secretions after experimental secondary infection with influenza A virus in humans. J Clin Microbiol. 1985;22(2):259–64. PubMed PMC
Ogra PL, Karzon DT, Righthand F, MacGillivray M. Immunoglobulin response in serum and secretions after immunization with live and inactivated poliovaccine and natural infection. N Engl J Med. 1968;279(17):893–900. doi: 10.1056/NEJM196810242791701 PubMed DOI
Murphy BR. Mucosal Immunity to Viruses In: Mestecky J, Lamm ME, Ogra P, Strober W, Bienenstock J, McGhee J, et al., editors. Mucosal Immunology. 3rd ed. Boston: Academic Press; 2005. pp. 799–813.
Broadbent AJ, Boonnak K, Subbarao K. Respiratory virus vaccines In: Mestecky J, Strober W, Russell M, Cheroutre H, Lambrecht BN, Kelsall B, editors. Mucosal Immunology. 4th ed. Boston: Academic Press; 2015. pp. 1129–70.
Xu W, Santini PA, Sullivan JS, He B, Shan M, Ball SC, et al. HIV-1 evades virus-specific IgG2 and IgA responses by targeting systemic and intestinal B cells via long-range intercellular conduits. Nat Immunol. 2009;10(9):1008–17. doi: 10.1038/ni.1753 PubMed DOI PMC
Hel Z, Xu J, Denning WL, Helton ES, Huijbregts RP, Heath SL, et al. Dysregulation of Systemic and Mucosal Humoral Responses to Microbial and Food Antigens as a Factor Contributing to Microbial Translocation and Chronic Inflammation in HIV-1 Infection. PLoS Pathog. 2017;13(1):e1006087 doi: 10.1371/journal.ppat.1006087 PubMed DOI PMC
Wright PF, Kozlowski PA, Rybczyk GK, Goepfert P, Staats HF, VanCott TC, et al. Detection of mucosal antibodies in HIV type 1-infected individuals. AIDS Res Hum Retroviruses. 2002;18(17):1291–300. doi: 10.1089/088922202320886334 PubMed DOI
Coogan MM, Sweet SP, Challacombe SJ. Immunoglobulin A (IgA), IgA1, and IgA2 antibodies to Candida albicans in whole and parotid saliva in human immunodeficiency virus infection and AIDS. Infect Immun. 1994;62(3):892–6. PubMed PMC
Collins AM, Batrawy SE, Gordon SB, Ferreira DM. Increased IgG but normal IgA anti-pneumococcal protein antibodies in lung of HIV-infected adults. Vaccine. 2013;31(35):3469–72. doi: 10.1016/j.vaccine.2013.04.062 PubMed DOI PMC
Kaushik K, Khurana S, Wanchu A, Malla N. Serum immunoglobulin G, M and A response to Cryptosporidium parvum in Cryptosporidium-HIV co-infected patients. BMC Infect Dis. 2009;9:179 doi: 10.1186/1471-2334-9-179 PubMed DOI PMC
Douek DC, Brenchley JM, Betts MR, Ambrozak DR, Hill BJ, Okamoto Y, et al. HIV preferentially infects HIV-specific CD4+ T cells. Nature. 2002;417(6884):95–8. doi: 10.1038/417095a PubMed DOI
Fink E, Fuller K, Agan B, Berger EA, Saphire A, Quinnan GV, et al. Humoral Antibody Responses to HIV Viral Proteins and to CD4 Among HIV Controllers, Rapid and Typical Progressors in an HIV-Positive Patient Cohort. AIDS Res Hum Retroviruses. 2016;32(12):1187–97. doi: 10.1089/aid.2016.0182 PubMed DOI PMC
Ruiz MJ, Ghiglione Y, Falivene J, Laufer N, Holgado MP, Socias ME, et al. Env-Specific IgA from Viremic HIV-Infected Subjects Compromises Antibody-Dependent Cellular Cytotoxicity. J Virol. 2016;90(2):670–81. doi: 10.1128/JVI.02363-15 PubMed DOI PMC
Haynes BF, Gilbert PB, McElrath MJ, Zolla-Pazner S, Tomaras GD, Alam SM, et al. Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N Engl J Med. 2012;366(14):1275–86. doi: 10.1056/NEJMoa1113425 PubMed DOI PMC
Tomaras GD, Ferrari G, Shen X, Alam SM, Liao HX, Pollara J, et al. Vaccine-induced plasma IgA specific for the C1 region of the HIV-1 envelope blocks binding and effector function of IgG. Proc Natl Acad Sci U S A. 2013;110(22):9019–24. doi: 10.1073/pnas.1301456110 PubMed DOI PMC
Zolla-Pazner S, deCamp AC, Cardozo T, Karasavvas N, Gottardo R, Williams C, et al. Analysis of V2 antibody responses induced in vaccinees in the ALVAC/AIDSVAX HIV-1 vaccine efficacy trial. PLoS One. 2013;8(1):e53629 doi: 10.1371/journal.pone.0053629 PubMed DOI PMC
Zolla-Pazner S, deCamp A, Gilbert PB, Williams C, Yates NL, Williams WT, et al. Vaccine-induced IgG antibodies to V1V2 regions of multiple HIV-1 subtypes correlate with decreased risk of HIV-1 infection. PLoS One. 2014;9(2):e87572 doi: 10.1371/journal.pone.0087572 PubMed DOI PMC
Kovacs A, Wasserman SS, Burns D, Wright DJ, Cohn J, Landay A, et al. Determinants of HIV-1 shedding in the genital tract of women. Lancet. 2001;358(9293):1593–601. doi: 10.1016/S0140-6736(01)06653-3 PubMed DOI
Okulicz JF, Lambotte O. Epidemiology and clinical characteristics of elite controllers. Curr Opin HIV AIDS. 2011;6(3):163–8. doi: 10.1097/COH.0b013e328344f35e PubMed DOI
Montefiori DC. Evaluating neutralizing antibodies against HIV, SIV, and SHIV in luciferase reporter gene assays. Curr Protoc Immunol. 2005;Chapter 12:Unit 12 1. PubMed
Wei Q, Moldoveanu Z, Huang WQ, Alexander RC, Goepfert PA, Mestecky J. Comparative Evaluation of HIV-1 Neutralization in External Secretions and Sera of HIV-1-Infected Women. Open AIDS J. 2012;6:293–302. doi: 10.2174/1874613601206010293 PubMed DOI PMC
Mestecky J, Wright PF, Lopalco L, Staats HF, Kozlowski PA, Moldoveanu Z, et al. Scarcity or absence of humoral immune responses in the plasma and cervicovaginal lavage fluids of heavily HIV-1-exposed but persistently seronegative women. AIDS Res Hum Retroviruses. 2011;27(5):469–86. doi: 10.1089/aid.2010.0169 PubMed DOI PMC
Pinter A, Honnen WJ, Kayman SC, Trochev O, Wu Z. Potent neutralization of primary HIV-1 isolates by antibodies directed against epitopes present in the V1/V2 domain of HIV-1 gp120. Vaccine. 1998;16(19):1803–11. PubMed
Eckert DM, Kim PS. Design of potent inhibitors of HIV-1 entry from the gp41 N-peptide region. Proc Natl Acad Sci U S A. 2001;98(20):11187–92. doi: 10.1073/pnas.201392898 PubMed DOI PMC
Williams WB, Liao HX, Moody MA, Kepler TB, Alam SM, Gao F, et al. HIV-1 VACCINES. Diversion of HIV-1 vaccine-induced immunity by gp41-microbiota cross-reactive antibodies. Science. 2015;349(6249):aab1253 doi: 10.1126/science.aab1253 PubMed DOI PMC
Zolla-Pazner S. Identifying epitopes of HIV-1 that induce protective antibodies. Nat Rev Immunol. 2004;4(3):199–210. doi: 10.1038/nri1307 PubMed DOI PMC
Wang J, Tong P, Lu L, Zhou L, Xu L, Jiang S, et al. HIV-1 gp41 core with exposed membrane-proximal external region inducing broad HIV-1 neutralizing antibodies. PLoS One. 2011;6(3):e18233 doi: 10.1371/journal.pone.0018233 PubMed DOI PMC
Kozlowski PA, Lynch RM, Patterson RR, Cu-Uvin S, Flanigan TP, Neutra MR. Modified wick method using Weck-Cel sponges for collection of human rectal secretions and analysis of mucosal HIV antibody. J Acquir Immune Defic Syndr. 2000;24(4):297–309. PubMed
Iyer SS, Gangadhara S, Victor B, Shen X, Chen X, Nabi R, et al. Virus-Like Particles Displaying Trimeric Simian Immunodeficiency Virus (SIV) Envelope gp160 Enhance the Breadth of DNA/Modified Vaccinia Virus Ankara SIV Vaccine-Induced Antibody Responses in Rhesus Macaques. J Virol. 2016;90(19):8842–54. doi: 10.1128/JVI.01163-16 PubMed DOI PMC
Lai L, Vodros D, Kozlowski PA, Montefiori DC, Wilson RL, Akerstrom VL, et al. GM-CSF DNA: an adjuvant for higher avidity IgG, rectal IgA, and increased protection against the acute phase of a SHIV-89.6P challenge by a DNA/MVA immunodeficiency virus vaccine. Virology. 2007;369(1):153–67. doi: 10.1016/j.virol.2007.07.017 PubMed DOI PMC
Dunn OJ. Multiple comparisons using rank sums. Technometrics. 1964;6(3):241–52.
Pastori C, Barassi C, Piconi S, Longhi R, Villa ML, Siccardi AG, et al. HIV neutralizing IgA in exposed seronegative subjects recognise an epitope within the gp41 coiled-coil pocket. J Biol Regul Homeost Agents. 2000;14(1):15–21. PubMed
Yamada T, Watanabe N, Nakamura T, Iwamoto A. Antibody-dependent cellular cytotoxicity via humoral immune epitope of Nef protein expressed on cell surface. J Immunol. 2004;172(4):2401–6. PubMed
Rezza G, Titti F, Pezzotti P, Sernicola L, Lo Caputo S, Angarano G, et al. Anti-nef antibodies and other predictors of disease progression in HIV-1 seropositive injecting drug users. J Biol Regul Homeost Agents. 1992;6(1):15–20. PubMed
Lai JI, Licht AF, Dugast AS, Suscovich T, Choi I, Bailey-Kellogg C, et al. Divergent antibody subclass and specificity profiles but not protective HLA-B alleles are associated with variable antibody effector function among HIV-1 controllers. J Virol. 2014;88(5):2799–809. doi: 10.1128/JVI.03130-13 PubMed DOI PMC
Tomaras GD, Yates NL, Liu P, Qin L, Fouda GG, Chavez LL, et al. Initial B-cell responses to transmitted human immunodeficiency virus type 1: virion-binding immunoglobulin M (IgM) and IgG antibodies followed by plasma anti-gp41 antibodies with ineffective control of initial viremia. J Virol. 2008;82(24):12449–63. doi: 10.1128/JVI.01708-08 PubMed DOI PMC
Liao HX, Chen X, Munshaw S, Zhang R, Marshall DJ, Vandergrift N, et al. Initial antibodies binding to HIV-1 gp41 in acutely infected subjects are polyreactive and highly mutated. J Exp Med. 2011;208(11):2237–49. doi: 10.1084/jem.20110363 PubMed DOI PMC
Barouch DH, Stephenson KE, Borducchi EN, Smith K, Stanley K, McNally AG, et al. Protective efficacy of a global HIV-1 mosaic vaccine against heterologous SHIV challenges in rhesus monkeys. Cell. 2013;155(3):531–9. doi: 10.1016/j.cell.2013.09.061 PubMed DOI PMC
Kasturi SP, Kozlowski PA, Nakaya HI, Burger MC, Russo P, Pham M, et al. Adjuvanting a Simian Immunodeficiency Virus Vaccine with Toll-Like Receptor Ligands Encapsulated in Nanoparticles Induces Persistent Antibody Responses and Enhanced Protection in TRIM5alpha Restrictive Macaques. J Virol. 2017;91(4). doi: 10.1128/JVI.01844-16 PubMed DOI PMC
Holl V, Peressin M, Decoville T, Schmidt S, Zolla-Pazner S, Aubertin AM, et al. Nonneutralizing antibodies are able to inhibit human immunodeficiency virus type 1 replication in macrophages and immature dendritic cells. J Virol. 2006;80(12):6177–81. doi: 10.1128/JVI.02625-05 PubMed DOI PMC
Santra S, Tomaras GD, Warrier R, Nicely NI, Liao HX, Pollara J, et al. Human Non-neutralizing HIV-1 Envelope Monoclonal Antibodies Limit the Number of Founder Viruses during SHIV Mucosal Infection in Rhesus Macaques. PLoS Pathog. 2015;11(8):e1005042 doi: 10.1371/journal.ppat.1005042 PubMed DOI PMC
Tyler DS, Stanley SD, Zolla-Pazner S, Gorny MK, Shadduck PP, Langlois AJ, et al. Identification of sites within gp41 that serve as targets for antibody-dependent cellular cytotoxicity by using human monoclonal antibodies. J Immunol. 1990;145(10):3276–82. PubMed
Burton DR, Hessell AJ, Keele BF, Klasse PJ, Ketas TA, Moldt B, et al. Limited or no protection by weakly or nonneutralizing antibodies against vaginal SHIV challenge of macaques compared with a strongly neutralizing antibody. Proc Natl Acad Sci U S A. 2011;108(27):11181–6. doi: 10.1073/pnas.1103012108 PubMed DOI PMC
Moog C, Dereuddre-Bosquet N, Teillaud JL, Biedma ME, Holl V, Van Ham G, et al. Protective effect of vaginal application of neutralizing and nonneutralizing inhibitory antibodies against vaginal SHIV challenge in macaques. Mucosal Immunol. 2014;7(1):46–56. doi: 10.1038/mi.2013.23 PubMed DOI
Arthos J, Cicala C, Martinelli E, Macleod K, Van Ryk D, Wei D, et al. HIV-1 envelope protein binds to and signals through integrin alpha4beta7, the gut mucosal homing receptor for peripheral T cells. Nat Immunol. 2008;9(3):301–9. doi: 10.1038/ni1566 PubMed DOI
Granados-Gonzalez V, Claret J, Berlier W, Vincent N, Urcuqui-Inchima S, Lucht F, et al. Opposite immune reactivity of serum IgG and secretory IgA to conformational recombinant proteins mimicking V1/V2 domains of three different HIV type 1 subtypes depending on glycosylation. AIDS Res Hum Retroviruses. 2008;24(2):289–99. doi: 10.1089/aid.2007.0187 PubMed DOI
Kato LM, Kawamoto S, Maruya M, Fagarasan S. Gut TFH and IgA: key players for regulation of bacterial communities and immune homeostasis. Immunol Cell Biol. 2014;92(1):49–56. doi: 10.1038/icb.2013.54 PubMed DOI
Cao AT, Yao S, Gong B, Nurieva RI, Elson CO, Cong Y. Interleukin (IL)-21 promotes intestinal IgA response to microbiota. Mucosal Immunol. 2015;8(5):1072–82. doi: 10.1038/mi.2014.134 PubMed DOI PMC
Hirota K, Turner JE, Villa M, Duarte JH, Demengeot J, Steinmetz OM, et al. Plasticity of Th17 cells in Peyer's patches is responsible for the induction of T cell-dependent IgA responses. Nat Immunol. 2013;14(4):372–9. doi: 10.1038/ni.2552 PubMed DOI PMC
Christensen D, Mortensen R, Rosenkrands I, Dietrich J, Andersen P. Vaccine-induced Th17 cells are established as resident memory cells in the lung and promote local IgA responses. Mucosal Immunol. 2016. PubMed
Jaffar Z, Ferrini ME, Girtsman TA, Roberts K. Antigen-specific Treg regulate Th17-mediated lung neutrophilic inflammation, B-cell recruitment and polymeric IgA and IgM levels in the airways. Eur J Immunol. 2009;39(12):3307–14. doi: 10.1002/eji.200939498 PubMed DOI PMC
Gosselin A, Monteiro P, Chomont N, Diaz-Griffero F, Said EA, Fonseca S, et al. Peripheral blood CCR4+CCR6+ and CXCR3+CCR6+CD4+ T cells are highly permissive to HIV-1 infection. J Immunol. 2010;184(3):1604–16. doi: 10.4049/jimmunol.0903058 PubMed DOI PMC
Guillot-Delost M, Le Gouvello S, Mesel-Lemoine M, Cherai M, Baillou C, Simon A, et al. Human CD90 identifies Th17/Tc17 T cell subsets that are depleted in HIV-infected patients. J Immunol. 2012;188(3):981–91. doi: 10.4049/jimmunol.1101592 PubMed DOI
El Hed A, Khaitan A, Kozhaya L, Manel N, Daskalakis D, Borkowsky W, et al. Susceptibility of human Th17 cells to human immunodeficiency virus and their perturbation during infection. J Infect Dis. 2010;201(6):843–54. doi: 10.1086/651021 PubMed DOI PMC
McKinnon LR, Nyanga B, Kim CJ, Izulla P, Kwatampora J, Kimani M, et al. Early HIV-1 infection is associated with reduced frequencies of cervical Th17 cells. J Acquir Immune Defic Syndr. 2015;68(1):6–12. doi: 10.1097/QAI.0000000000000389 PubMed DOI
Brenchley JM, Paiardini M, Knox KS, Asher AI, Cervasi B, Asher TE, et al. Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections. Blood. 2008;112(7):2826–35. doi: 10.1182/blood-2008-05-159301 PubMed DOI PMC
Masson L, Salkinder AL, Olivier AJ, McKinnon LR, Gamieldien H, Mlisana K, et al. Relationship between female genital tract infections, mucosal interleukin-17 production and local T helper type 17 cells. Immunology. 2015;146(4):557–67. doi: 10.1111/imm.12527 PubMed DOI PMC
Favre D, Mold J, Hunt PW, Kanwar B, Loke P, Seu L, et al. Tryptophan catabolism by indoleamine 2,3-dioxygenase 1 alters the balance of TH17 to regulatory T cells in HIV disease. Sci Transl Med. 2010;2(32):32ra6. PubMed PMC
Gaardbo JC, Ronit A, Hartling HJ, Gjerdrum LM, Springborg K, Ralfkiaer E, et al. Immunoregulatory T cells may be involved in preserving CD4 T cell counts in HIV-infected long-term nonprogressors and controllers. J Acquir Immune Defic Syndr. 2014;65(1):10–8. doi: 10.1097/QAI.0b013e3182a7c932 PubMed DOI
Li D, Chen J, Jia M, Hong K, Ruan Y, Liang H, et al. Loss of balance between T helper type 17 and regulatory T cells in chronic human immunodeficiency virus infection. Clin Exp Immunol. 2011;165(3):363–71. doi: 10.1111/j.1365-2249.2011.04435.x PubMed DOI PMC
Ciccone EJ, Greenwald JH, Lee PI, Biancotto A, Read SW, Yao MA, et al. CD4+ T cells, including Th17 and cycling subsets, are intact in the gut mucosa of HIV-1-infected long-term nonprogressors. J Virol. 2011;85(12):5880–8. doi: 10.1128/JVI.02643-10 PubMed DOI PMC
Schafer F, Kewenig S, Stolte N, Stahl-Hennig C, Stallmach A, Kaup FJ, et al. Lack of simian immunodeficiency virus (SIV) specific IgA response in the intestine of SIV infected rhesus macaques. Gut. 2002;50(5):608–14. PubMed PMC
Lai L, Kwa SF, Kozlowski PA, Montefiori DC, Nolen TL, Hudgens MG, et al. SIVmac239 MVA vaccine with and without a DNA prime, similar prevention of infection by a repeated dose SIVsmE660 challenge despite different immune responses. Vaccine. 2012;30(9):1737–45. doi: 10.1016/j.vaccine.2011.12.026 PubMed DOI PMC
Velu V, Mylvaganam GH, Gangadhara S, Hong JJ, Iyer SS, Gumber S, et al. Induction of Th1-Biased T Follicular Helper (Tfh) Cells in Lymphoid Tissues during Chronic Simian Immunodeficiency Virus Infection Defines Functionally Distinct Germinal Center Tfh Cells. J Immunol. 2016;197(5):1832–42. doi: 10.4049/jimmunol.1600143 PubMed DOI PMC
Ferre AL, Hunt PW, Critchfield JW, Young DH, Morris MM, Garcia JC, et al. Mucosal immune responses to HIV-1 in elite controllers: a potential correlate of immune control. Blood. 2009;113(17):3978–89. doi: 10.1182/blood-2008-10-182709 PubMed DOI PMC
Ostrowski SR, Katzenstein TL, Pedersen BK, Gerstoft J, Ullum H. Residual viraemia in HIV-1-infected patients with plasma viral load <or = 20 copies/ml is associated with increased blood levels of soluble immune activation markers. Scand J Immunol. 2008;68(6):652–60. doi: 10.1111/j.1365-3083.2008.02184.x PubMed DOI
Regidor DL, Detels R, Breen EC, Widney DP, Jacobson LP, Palella F, et al. Effect of highly active antiretroviral therapy on biomarkers of B-lymphocyte activation and inflammation. AIDS. 2011;25(3):303–14. doi: 10.1097/QAD.0b013e32834273ad PubMed DOI PMC