Bayesian inference for psychology. Part II: Example applications with JASP
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
28685272
PubMed Central
PMC5862926
DOI
10.3758/s13423-017-1323-7
PII: 10.3758/s13423-017-1323-7
Knihovny.cz E-zdroje
- Klíčová slova
- Bayes factor, Hypothesis test, Posterior distribution, Statistical evidence,
- MeSH
- Bayesova věta * MeSH
- lidé MeSH
- psychologie * MeSH
- software * MeSH
- výzkumný projekt MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Bayesian hypothesis testing presents an attractive alternative to p value hypothesis testing. Part I of this series outlined several advantages of Bayesian hypothesis testing, including the ability to quantify evidence and the ability to monitor and update this evidence as data come in, without the need to know the intention with which the data were collected. Despite these and other practical advantages, Bayesian hypothesis tests are still reported relatively rarely. An important impediment to the widespread adoption of Bayesian tests is arguably the lack of user-friendly software for the run-of-the-mill statistical problems that confront psychologists for the analysis of almost every experiment: the t-test, ANOVA, correlation, regression, and contingency tables. In Part II of this series we introduce JASP ( http://www.jasp-stats.org ), an open-source, cross-platform, user-friendly graphical software package that allows users to carry out Bayesian hypothesis tests for standard statistical problems. JASP is based in part on the Bayesian analyses implemented in Morey and Rouder's BayesFactor package for R. Armed with JASP, the practical advantages of Bayesian hypothesis testing are only a mouse click away.
Birla Institute of Technology and Science Pilani India
Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Berger JO, Delampady M. Testing precise hypotheses. Statistical Science. 1987;2:317–352. doi: 10.1214/ss/1177013238. DOI
Berger JO, Pericchi LR. The intrinsic Bayes factor for model selection and prediction. Journal of the American Statistical Association. 1996;91:109–122. doi: 10.1080/01621459.1996.10476668. DOI
Bernhardt I, Jung BS. The interpretation of least squares regression with interaction or polynomial terms. The Review of Economics and Statistics. 1979;61:481–483. doi: 10.2307/1926085. DOI
Chambers JM, Cleveland WS, Kleiner. Tukey PA. Graphical methods for data analysis. New York: Chapman and Hall; 1983.
Clyde, M. (2016). BAS: Bayesian adaptive sampling for Bayesian model averaging. (R package version 1.4.1).
Costa PT, McCrae RR. NEO Personality Inventory professional manual. Odessa, FL: Psychological Assessment Resources; 1992.
Cramer, A. O. J., van Ravenzwaaij, D., Matzke, D., Steingroever, H., Wetzels, R., Grasman, R. P. P. P., Waldorp, L. J., & Wagenmakers, E.-J. (2016). Hidden multiplicity in multiway ANOVA: Prevalence, consequences, and remedies. Psychonomic Bulletin & Review, 23, 640–647. PubMed PMC
Dickey JM, Lientz BP. The weighted likelihood ratio, sharp hypotheses about chances, the order of a Markov chain. The Annals of Mathematical Statistics. 1970;41:214–226. doi: 10.1214/aoms/1177697203. DOI
Dienes Z. Bayesian versus orthodox statistics: Which side are you on? Perspectives on Psychological Science. 2011;6:274–290. doi: 10.1177/1745691611406920. PubMed DOI
Dienes Z. Using Bayes to get the most out of non-significant results. Frontiers in Psycholology. 2014;5:781. PubMed PMC
Dienes Z. How Bayes factors change scientific practice. Journal of Mathematical Psycholology. 2016;72:78–89. doi: 10.1016/j.jmp.2015.10.003. DOI
Edwards W, Lindman H, Savage LJ. Bayesian statistical inference for psychological research. Psychological Review. 1963;70:193–242. doi: 10.1037/h0044139. DOI
Etz, A., & Wagenmakers, E. -J. (in press). J. B. S. Haldane’s contribution to the Bayes factor hypothesis test. Statistical Science.
Francis G. Replication, statistical consistency, and publication bias. Journal of Mathematical Psychology. 2013;57:153–169. doi: 10.1016/j.jmp.2013.02.003. DOI
Griepentrog GL, Ryan JM. Linear transformations of polynomial regression models. The American Statistician. 1982;36:171–174.
Gronau, Q. F., Ly, A., & Wagenmakers, E.-J. (2017). Informed Bayesian t-tests. Manuscript submitted for publication.
Gronau, Q. F., & Wagenmakers, E.-J. (in press). Bayesian evidence accumulation in experimental mathematics: A case study of four irrational numbers. Experimental Mathematics.
Gu, X. (2016). Bayesian evaluation of informative hypotheses. Utrecht University.
Gu X, Mulder J, Decović M, Hoijtink H. Bayesian evaluation of inequality constrained hypotheses. Psychological Methods. 2014;19:511–527. doi: 10.1037/met0000017. PubMed DOI
Gunel E, Dickey J. Bayes factors for independence in contingency tables. Biometrika. 1974;61:545–557. doi: 10.1093/biomet/61.3.545. DOI
Haldane JBS. A note on inverse probability. Mathematical Proceedings of the Cambridge Philosophical Society. 1932;28:55–61. doi: 10.1017/S0305004100010495. DOI
Hoekstra, H. A., Ormel, & de Fruyt, F. (1996). Handleiding bij de NEO persoonlijkheids vragenlijsten NEO-PIR NEO-FFI [manual for the NEO personality inventories NEO-PI-r and NEO-FFI]. Lisse, the Netherlands: Swets & Zeitlinger.
Hoeting JA, Madigan D, Raftery. Volinsky CT. Bayesian model averaging: A tutorial. Statistical Science. 1999;14:382–417. doi: 10.1214/ss/1009212519. DOI
Jamil, T., Ly, A., Morey, R. D., Love, J., Marsman, M., & Wagenmakers, E.-J. (in press). Default “Gunel and Dickey” Bayes factors for contingency tables. Behavior Research Methods. PubMed PMC
Jamil, T., Marsman, M., Ly, A., Morey, R. D., & Wagenmakers, E.-J. (in press). What are the odds? Modern relevance and Bayes factor solutions for MacAlister’s problem from the 1881 Educational Times. Educational and Psychological Measurement. PubMed PMC
JASP Team (2017). JASP (Version 0.8.1)[Computer software].
Jaynes ET. Probability theory: The logic of science. Cambridge: Cambridge University Press; 2003.
Jeffreys H. Theory of probability. (3rd ed.) Oxford, UK: Oxford University Press; 1961.
Johnson VE. Revised standards for statistical evidence. Proceedings of the National Academy of Sciences of the United States of America. 2013;110:19313–19317. doi: 10.1073/pnas.1313476110. PubMed DOI PMC
Lee, M. D., & Wagenmakers, E. -J (2013). Bayesian cognitive modeling: A practical course. Cambridge University Press.
Liang F, Paulo R, Molina G, Clyde MA. Mixtures of g priors for Bayesian variable selection. Journal of the American Statistical Association. 2008;103:410–423. doi: 10.1198/016214507000001337. DOI
Lipkus IM, Hollands JG. The visual communication of risk. Journal of the National Cancer Institute Monographs. 1999;25:149–163. doi: 10.1093/oxfordjournals.jncimonographs.a024191. PubMed DOI
Ly, A., Marsman, M., & Wagenmakers, E.-J. (in press). Analytic posteriors for Pearson’s correlation coefficient. Statistica Neerlandica. PubMed PMC
Ly, A., Verhagen, A. J., & Wagenmakers, E.-J. (2016a). An evaluation of alternative methods for testing hypotheses, from the perspective of Harold Jeffreys. Journal of Mathematical Psychology, 72, 43–55.
Ly, A., Verhagen, A. J., & Wagenmakers, E.-J. (2016b). Harold Jeffreys’s default Bayes factor hypothesis tests: Explanation, extension, and application in psychology. Journal of Mathematical Psychology, 72, 19–32.
Matzke, D., Nieuwenhuis, S., van Rijn, H., Slagter, H. A., van der Molen, M. W., & Wagenmakers, E.-J. (2015). The effect of horizontal eye movements on free recall: A preregistered adversarial collaboration. Journal of Experimental Psychology: General, 144, e1–e15. PubMed
McClave JT, Dietrich FHII. Statistics. San Francisco: Dellen Publishing; 1991.
McCullagh P, Nelder JA. Generalized linear models. 2nd ed. London: Chapman & Hall; 1989.
Morey, R. D., & Rouder, J. N. (2015). BayesFactor 0.9.11-1. Comprehensive R Archive Network.
Mulder J. Prior adjusted default Bayes factors for testing (in)equality constrained hypotheses. Computational Statistics and Data Analysis. 2014;71:448–463. doi: 10.1016/j.csda.2013.07.017. DOI
Mulder J. Bayes factors for testing order–constrained hypotheses on correlations. Journal of Mathematical Psychology. 2016;72:104–115. doi: 10.1016/j.jmp.2014.09.004. DOI
Nelder JA. The selection of terms in response-surface models—how strong is the weak-heredity principle? The American Statistician. 1998;52:315–318.
Nelder JA. Functional marginality and response-surface fitting. Journal of Applied Statistics. 2000;27:109–112. doi: 10.1080/02664760021862. DOI
O’Hagan A, Forster J. Kendall’s advanced theory of statistics vol 2B: Bayesian inference. 2nd ed. London: Arnold; 2004.
Overstall, A. M., & King, R. (2014a). A default prior distribution for contingency tables with dependent factor levels. Statistical Methodology, 16, 90–99. PubMed PMC
Overstall, A. M., & King, R. (2014b). conting: An R package for Bayesian analysis of complete and incomplete contingency tables. Journal of Statistical Software, 58, 1–27.
Peixoto, J. L. (1987). Hierarchical variable selection in polynomial regression models. The American Statistician, 41, 311–313.
Peixoto JL. A property of well-formulated polynomial regression models. The American Statistician. 1990;44:26–30.
R Development Core Team (2004). R: A language and environment for statistical computing. Vienna, Austria. (ISBN 3–900051–00–3).
Rosnow RL, Rosenthal R. Statistical procedures and the justification of knowledge in psychological science. American Psychologist. 1989;44:1276–1284. doi: 10.1037/0003-066X.44.10.1276. DOI
Rouder, J. N., Engelhardt, C. R., McCabe, S., & Morey, R. D. (in press). Model comparison in ANOVA. Psychonomic Bulletin & Review. PubMed
Rouder JN, Morey RD. Default Bayes factors for model selection in regression. Multivariate Behavioral Research. 2012;47:877–903. doi: 10.1080/00273171.2012.734737. PubMed DOI
Rouder JN, Morey RD, Speckman. Province JM. Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology. 2012;56:356–374. doi: 10.1016/j.jmp.2012.08.001. DOI
Rouder, J. N., Morey, R. D., Verhagen, A. J., Swagman, A. R., & Wagenmakers, E. -J. (in press). Bayesian analysis of factorial designs. Psychological Methods. PubMed
Rouder JN, Speckman PL, Sun D, Morey RD, Iverson G. Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review. 2009;16:225–237. doi: 10.3758/PBR.16.2.225. PubMed DOI
Ryan RS, Wilde M. Compared to a small, supervised lab experiment, a large, unsupervised web–based experiment on a previously unknown effect has benefits that outweigh its potential costs. Computers in Human Behavior. 2013;29:1295–1301. doi: 10.1016/j.chb.2013.01.024. DOI
Scheibehenne, B., Jamil, T., & Wagenmakers, E.-J. (in press). Bayesian evidence synthesis can reconcile seemingly inconsistent results: The case of hotel towel reuse. Psychological Science. PubMed
Schönbrodt, F. D., Wagenmakers, E.-J., Zehetleitner, M., & Perugini, M. (in press). Sequential hypothesis testing with Bayes factors: Efficiently testing mean differences. Psychological Methods. PubMed
Scott JG, Berger JO. An exploration of aspects of Bayesian multiple testing. Journal of Statistical Planning and Inference. 2006;136:2144–2162. doi: 10.1016/j.jspi.2005.08.031. DOI
Scott JG, Berger JO. Bayes and empirical–Bayes multiplicity adjustment in the variable–selection problem. The Annals of Statistics. 2010;38:2587–2619. doi: 10.1214/10-AOS792. DOI
Stephens M, Balding DJ. Bayesian statistical methods for genetic association studies. Nature Reviews Genetics. 2009;10:681–690. doi: 10.1038/nrg2615. PubMed DOI
Stevens SS. On the theory of scales of measurement. Science. 1946;103:677–680. doi: 10.1126/science.103.2684.677. PubMed DOI
Stulp G, Buunk AP, Verhulst. Pollet TV. Tall claims? Sense and nonsense about the importance of height of US presidents. The Leadership Quarterly. 2013;24:159–171. doi: 10.1016/j.leaqua.2012.09.002. DOI
Topolinski S, Sparenberg P. Turning the hands of time: Clockwise movements increase preference for novelty. Social Psychological and Personality Science. 2012;3:308–314. doi: 10.1177/1948550611419266. DOI
Tversky A. Intransitivity of preferences. Psychological Review. 1969;76:31–48. doi: 10.1037/h0026750. DOI
van Doorn, J., Ly, A., Marsman, M., & Wagenmakers, E.-J. (in press). Bayesian inference for Kendall’s rank correlation coefficient. The American Statistician.
Venables, W. N. (2000). Exegeses on linear models. Paper presented to the S-PLUS User’s Conference.
Wagenmakers E-J, Lodewyckx T, Kuriyal H, Grasman R. Bayesian hypothesis testing for psychologists: A tutorial on the Savage–Dickey method. Cognitive Psychology. 2010;60:158–189. doi: 10.1016/j.cogpsych.2009.12.001. PubMed DOI
Wagenmakers E-J, Beek T, Rotteveel M, Gierholz A, Matzke D, Steingroever H, Ly A, Verhagen AJ, Selker R, Sasiadek A, Pinto Y. Turning the hands of time again: A purely confirmatory replication study and a Bayesian analysis. Frontiers in Psychology: Cognition. 2015;6:494. doi: 10.3389/fpsyg.2015.00494. PubMed DOI PMC
Wagenmakers, E.-J., Marsman, M., Jamil, T., Ly, A., Verhagen, A. J., Love, J., Selker, R., Gronau, Q. F., Šmíra, M., Epskamp, S., Matzke, D., Rouder, J. N., & Morey, R. D. (2017). Bayesian statistical inference for psychological science. Part I: Theoretical advantages and practical ramifications. Psychonomic Bulletin & Review, (in this issue). PubMed PMC
Wetzels R, Raaijmakers JGW, Jakab E, Wagenmakers E-J. How to quantify support for and against the null hypothesis: A flexible WinBUGS, implementation of a default Bayesian t test. Psychonomic Bulletin & Review. 2009;16:752–760. doi: 10.3758/PBR.16.4.752. PubMed DOI
Wetzels R, Matzke D, Lee MD, Rouder JN, Iverson GJ, Wagenmakers E-J. Statistical evidence in experimental psychology: An empirical comparison using 855 t tests. Perspectives on Psychological Science. 2011;6:291–298. doi: 10.1177/1745691611406923. PubMed DOI
Zellner A, Siow A. Posterior odds ratios for selected regression hypotheses. In: Bernardo J M, DeGroot M H, Lindley D V, Smith A F M, editors. Bayesian statistics. Valencia: University Press; 1980. pp. 585–603.
Young-Old City-Dwellers Outperform Village Counterparts in Attention and Verbal Control Tasks
Bayesian inference for psychology. Part I: Theoretical advantages and practical ramifications