• This record comes from PubMed

Strategies toward protecting group-free glycosylation through selective activation of the anomeric center

. 2017 ; 13 () : 1239-1279. [epub] 20170627

Status PubMed-not-MEDLINE Language English Country Germany Media electronic-ecollection

Document type Journal Article, Review

Glycosylation is an immensely important biological process and one that is highly controlled and very efficient in nature. However, in a chemical laboratory the process is much more challenging and usually requires the extensive use of protecting groups to squelch reactivity at undesired reactive moieties. Nonetheless, by taking advantage of the differential reactivity of the anomeric center, a selective activation at this position is possible. As a result, protecting group-free strategies to effect glycosylations are available thanks to the tremendous efforts of many research groups. In this review, we showcase the methods available for the selective activation of the anomeric center on the glycosyl donor and the mechanisms by which the glycosylation reactions take place to illustrate the power these techniques.

See more in PubMed

Khoury G A, Baliban R C, Floudas C A. Sci Rep. 2011;1:No. 90. doi: 10.1038/srep00090. PubMed DOI PMC

Young I S, Baran P S. Nat Chem. 2009;1:193–205. doi: 10.1038/Nchem.216. PubMed DOI

Mahrwald R. Chem Commun. 2015;51:13868–13877. doi: 10.1039/c5cc04386g. PubMed DOI

Saloranta T, Leino R. Synlett. 2015;26:421–425. doi: 10.1055/s-0034-1379979. DOI

Codée J D C, Ali A, Overkleeft H S, van der Marel G A. C R Chim. 2011;14:178–193. doi: 10.1016/j.crci.2010.05.010. DOI

Jensen K J. J Chem Soc, Perkin Trans 1. 2002:2219–2233. doi: 10.1039/b110071h. DOI

Jacobsson M, Malmberg J, Ellervik U. Carbohydr Res. 2006;341:1266–1281. doi: 10.1016/j.carres.2006.04.004. PubMed DOI

Yang Y, Zhang X, Yu B. Nat Prod Rep. 2015;32:1331–1355. doi: 10.1039/c5np00033e. PubMed DOI

Christensen J J, Rytting J H, Izatt R M. J Chem Soc B. 1970:1646–1648. doi: 10.1039/j29700001646. DOI

Feng S T, Bagia C, Mpourmpakis G. J Phys Chem A. 2013;117:5211–5219. doi: 10.1021/jp403355e. PubMed DOI

Villadsen K, Martos-Maldonado M C, Jensen K J, Thygesen M B. ChemBioChem. 2017;18:574–612. doi: 10.1002/cbic.201600582. PubMed DOI

Hancock S M, Vaughan M D, Withers S G. Curr Opin Chem Biol. 2006;10:509–519. doi: 10.1016/j.cbpa.2006.07.015. PubMed DOI

Li C, Wang L-X. Endoglycosidases for the Synthesis of Polysaccharides and Glycoconjugates. In: Baker D C, editor. Advances in Carbohydrate Chemistry and Biochemistry. Vol. 73. Amsterdam, Netherlands: Elsevier; 2016. pp. 73–116. PubMed PMC

Wang X-L. Carbohydr Res. 2008;343:1509–1522. doi: 10.1016/j.carres.2008.03.025. PubMed DOI PMC

Mayer C, Jakeman D L, Mah M, Karjala G, Gal L, Warren R A J, Withers S G. Chem Biol. 2001;8:437–443. doi: 10.1016/S1074-5521(01)00022-9. PubMed DOI

Priyanka P, Parsons T B, Miller A, Platt F M, Fairbanks A J. Angew Chem, Int Ed. 2016;55:5058–5061. doi: 10.1002/anie.201600817. PubMed DOI

Heidecke C D, Ling Z, Bruce N C, Moir J W B, Parsons T B, Fairbanks A J. ChemBioChem. 2008;9:2045–2051. doi: 10.1002/cbic.200800214. PubMed DOI

Varki A, Cummings R D, Esko J D, et al. Essentials of Glycobiology. 2nd ed. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 2009. PubMed

Ihara Y, Inai Y, Ikezaki M, Matsui I-S L, Manabe S, Ito Y. C-Mannosylation: A Modification on Tryptophan in Cellular Proteins. In: Endo T, Seeberger P H, Hart G W, et al., editors. Glycoscience: Biology and Medicine. Japan: Springer; 2014. pp. 1091–1099. DOI

Williams G J, Thorson J S. Natural Product Glycosyltransferases: Properties and Applications. In: Toone E J, editor. Advances in Enzymology and Related Areas of Molecular Biology: And Related Areas of Molecular Biology. Vol. 76. Hoboken, New Jersey: John Wiley & Sons, Inc.; 2009. pp. 55–119. PubMed DOI

Schuman B, Evans S V, Fyles T M. PLoS One. 2013;8:e71077. doi: 10.1371/journal.pone.0071077. PubMed DOI PMC

Zhang C S, Griffith B R, Fu Q, Albermann C, Fu X, Lee I-K, Li L, Thorson J S. Science. 2006;313:1291–1294. doi: 10.1126/science.1130028. PubMed DOI

Votruba I, Holý A, Dvořáková H, Günter J, Hocková D, Hřebabecký H, Cihlar T, Masojídková M. Collect Czech Chem Commun. 1994;59:2303–2330. doi: 10.1135/cccc19942303. DOI

Romeo G, Chiacchio U, Corsaro A, Merino P. Chem Rev. 2010;110:3337–3370. doi: 10.1021/cr800464r. PubMed DOI

Fresco-Taboada A, de la Mata I, Arroyo M, Fernández-Lucas J. Appl Microbiol Biotechnol. 2013;97:3773–3785. doi: 10.1007/s00253-013-4816-y. PubMed DOI

Stepchenko V A, Miroshnikov A I, Seela F, Mikhailopulo I A. Beilstein J Org Chem. 2016;12:2588–2601. doi: 10.3762/bjoc.12.254. PubMed DOI PMC

Fischer E. Ber Dtsch Chem Ges. 1895;28:1145–1167. doi: 10.1002/cber.189502801248. DOI

Fischer E. Ber Dtsch Chem Ges. 1893;26:2400–2412. doi: 10.1002/cber.18930260327. DOI

Ferrières V, Bertho J-N, Plusquellec D. Tetrahedron Lett. 1995;36:2749–2752. doi: 10.1016/0040-4039(95)00356-H. DOI

Bertho J-N, Ferrières V, Plusquellec D. J Chem Soc, Chem Commun. 1995:1391–1393. doi: 10.1039/c39950001391. DOI

Velty R, Benvegnu T, Gelin M, Privat E, Plusquellec D. Carbohydr Res. 1997;299:7–14. doi: 10.1016/S0008-6215(96)00268-6. DOI

Regeling H, Zwanenburg B, Chittenden G J F. Carbohydr Res. 1998;314:267–272. doi: 10.1016/S0008-6215(98)00308-5. DOI

Ferrières V, Benvegnu T, Lefeuvre M, Plusquellec D, Mackenzie G, Watson M J, Haley J A, Goodby J W, Pindak R, Durbin M K. J Chem Soc, Perkin Trans 2. 1999:951–959. doi: 10.1039/a900192a. DOI

Joniak D, Poláková M. J Serb Chem Soc. 2001;66:81–86.

Roy D K, Bordoloi M. J Carbohydr Chem. 2008;27:300–307. doi: 10.1080/07328300802107437. DOI

Bornaghi L F, Poulsen S-A. Tetrahedron Lett. 2005;46:3485–3488. doi: 10.1016/j.tetlet.2005.03.126. DOI

Hanessian S, Lou B. Chem Rev. 2000;100:4443–4464. doi: 10.1021/cr9903454. PubMed DOI

Capon B. Chem Rev. 1969;69:407–498. doi: 10.1021/cr60260a001. DOI

Sharma D K, Lambu M R, Sidiq T, Khajuria A, Tripathi A K, Yousuf S K, Mukherjee D. RSC Adv. 2013;3:11450–11455. doi: 10.1039/c3ra41050a. DOI

Christina A E, van der Marel G A, Codée J D C. Recent Developments in the Construction of cis-Glycosidic Linkages. In: Werz D B, Vidal S, editors. Modern Synthetic Methods in Carbohydrate Chemistry: From Monosaccharides to Complex Glycoconjugates. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2014. DOI

Nigudkar S S, Demchenko A V. Chem Sci. 2015;6:2687–2704. doi: 10.1039/c5sc00280j. PubMed DOI PMC

St-Pierre G, Hanessian S. Org Lett. 2016;18:3106–3109. doi: 10.1021/acs.orglett.6b01263. PubMed DOI

Euzen R, Ferrières V, Plusquellec D. J Org Chem. 2005;70:847–855. doi: 10.1021/jo0484934. PubMed DOI

Poulin M B, Lowary T L. J Org Chem. 2016;81:8123–8130. doi: 10.1021/acs.joc.6b01501. PubMed DOI

Poulin M B, Shi Y, Protsko C, Dalrymple S A, Sanders D A R, Pinto B M, Lowary T L. ChemBioChem. 2014;15:47–56. doi: 10.1002/cbic.201300653. PubMed DOI

Ferrières V, Gelin M, Boulch R, Toupet L, Plusquellec D. Carbohydr Res. 1998;314:79–83. doi: 10.1016/S0008-6215(98)00290-0. DOI

Ferrières V, Bertho J-N, Plusquellec D. Carbohydr Res. 1998;311:25–35. doi: 10.1016/S0008-6215(98)00197-9. DOI

Ferrières V, Blanchard S, Fischer D, Plusquellec D. Bioorg Med Chem Lett. 2002;12:3515–3518. doi: 10.1016/S0960-894x(02)00822-3. PubMed DOI

Euzen R, Guégan J-P, Ferrières V, Plusquellec D. J Org Chem. 2007;72:5743–5747. doi: 10.1021/jo070741j. PubMed DOI

Peltier P, Daniellou R, Nugier-Chauvin C, Ferrières V. Org Lett. 2007;9:5227–5230. doi: 10.1021/ol702392x. PubMed DOI

Davis B G, Wood S D, Maughan M A T. Can J Chem. 2002;80:555–558. doi: 10.1139/V02-029. DOI

Martin A, Arda A, Désiré J, Martin-Mingot A, Probst N, Sinaÿ P, Jiménez-Barbero J, Thibaudeau S, Blériot Y. Nat Chem. 2016;8:186–191. doi: 10.1038/Nchem.2399. PubMed DOI

Bohé L, Crich D. C R Chim. 2011;14:3–16. doi: 10.1016/j.crci.2010.03.016. DOI

Lemieux R U, Hendriks K B, Stick R V, James K. J Am Chem Soc. 1975;97:4056–4062. doi: 10.1021/ja00847a032. DOI

Ayala L, Lucero C G, Romero J A C, Tabacco S A, Woerpel K A. J Am Chem Soc. 2003;125:15521–15528. doi: 10.1021/ja037935a. PubMed DOI

Meng B, Zhu Z, Baker D C. Org Biomol Chem. 2014;12:5182–5191. doi: 10.1039/c4ob00626g. PubMed DOI

Pelletier G, Zwicker A, Allen C L, Schepartz A, Miller S J. J Am Chem Soc. 2016;138:3175–3182. doi: 10.1021/jacs.5b13384. PubMed DOI PMC

Gloster T M. Curr Opin Struct Biol. 2014;28:131–141. doi: 10.1016/j.sbi.2014.08.012. PubMed DOI PMC

Lairson L L, Henrissat B, Davies G J, Withers S G. Annu Rev Biochem. 2008;77:521–555. doi: 10.1146/annurev.biochem.76.061005.092322. PubMed DOI

Magnet S, Blanchard J S. Chem Rev. 2005;105:477–498. doi: 10.1021/cr0301088. PubMed DOI

McKay M J, Nguyen H M. ACS Catal. 2012;2:1563–1595. doi: 10.1021/cs3002513. PubMed DOI PMC

Mamidyala S K, Finn M G. J Org Chem. 2009;74:8417–8420. doi: 10.1021/jo901857x. PubMed DOI

Hotha S, Kashyap S. J Am Chem Soc. 2006;128:17153–17154. doi: 10.1021/ja067885k. PubMed DOI

Hasegawa T, Numata M, Okumura S, Kimura T, Sakurai K, Shinkai S. Org Biomol Chem. 2007;5:2404–2412. doi: 10.1039/b703720a. PubMed DOI

Zhu F, Rourke M J, Yang T, Rodriguez J, Walczak M A. J Am Chem Soc. 2016;138:12049–12052. doi: 10.1021/jacs.6b07891. PubMed DOI

Bililign T, Griffith B R, Thorson J S. Nat Prod Rep. 2005;22:742–760. doi: 10.1039/b407364a. PubMed DOI

De Clercq E. J Med Chem. 2016;59:2301–2311. doi: 10.1021/acs.jmedchem.5b01157. PubMed DOI

Noguchi M, Tanaka T, Gyakushi H, Kobayashi A, Shoda S-i. J Org Chem. 2009;74:2210–2212. doi: 10.1021/jo8024708. PubMed DOI

Noguchi M, Fujieda T, Huang W C, Ishihara M, Kobayashi A, Shoda S-i. Helv Chim Acta. 2012;95:1928–1936. doi: 10.1002/hlca.201200414. DOI

Noguchi M, Kobayashi A, Shoda S-i. Trends Glycosci Glycotechnol. 2015;27:E35–E42. doi: 10.4052/tigg.1505.2E. DOI

Tanaka T, Huang W C, Noguchi M, Kobayashi A, Shoda S-i. Tetrahedron Lett. 2009;50:2154–2157. doi: 10.1016/j.tetlet.2009.02.171. DOI

Yoshida N, Tanaka T, Noguchi M, Kobayashi A, Ishikura K, Ikenuma T, Seno H, Watanabe T, Kohri M, Shoda S-i. Chem Lett. 2012;41:689–690. doi: 10.1246/cl.2012.689. DOI

Tanaka T, Nagai H, Noguchi M, Kobayashi A, Shoda S-i. Chem Commun. 2009:3378–3379. doi: 10.1039/b905761g. PubMed DOI

Li G, Noguchi M, Kashiwagura H, Tanaka Y, Serizawa K, Shoda S-i. Tetrahedron Lett. 2016;57:3529–3531. doi: 10.1016/j.tetlet.2016.06.106. DOI

Tanaka T, Matsumoto T, Noguchi M, Kobayashi A, Shoda S-i. Chem Lett. 2009;38:458–459. doi: 10.1246/cl.2009.458. DOI

Yoshida N, Noguchi M, Tanaka T, Matsumoto T, Aida N, Ishihara M, Kobayashi A, Shoda S-i. Chem – Asian J. 2011;6:1876–1885. doi: 10.1002/asia.201000896. PubMed DOI

Thamsen J. Acta Chem Scand. 1952;6:270–284. doi: 10.3891/acta.chem.scand.06-0270. DOI

Yoshida N, Fujieda T, Kobayashi A, Ishihara M, Noguchi M, Shoda S-i. Chem Lett. 2013;42:1038–1039. doi: 10.1246/cl.130379. DOI

Novoa A, Barluenga S, Serba C, Winssinger N. Chem Commun. 2013;49:7608–7610. doi: 10.1039/c3cc43458c. PubMed DOI

Köhling S, Exner M P, Nojoumi S, Schiller J, Budisa N, Rademann J. Angew Chem, Int Ed. 2016;55:15510–15514. doi: 10.1002/anie.201607228. PubMed DOI

Acevedo-Rocha C G, Hoesl M G, Nehring S, Royter M, Wolschner C, Wiltschi B, Antranikian G, Budisa N. Catal Sci Technol. 2013;3:1198–1201. doi: 10.1039/c3cy20712a. DOI

Exner M P, Köhling S, Rivollier J, Gosling S, Srivastava P, Palyancheva Z I, Herdewijn P, Heck M-P, Rademann J, Budisa N. Molecules. 2016;21:287–295. doi: 10.3390/molecules21030287. PubMed DOI PMC

Alexander S R, Lim D, Amso Z, Brimble M A, Fairbanks A J. Org Biomol Chem. 2017;15:2152–2156. doi: 10.1039/c7ob00112f. PubMed DOI

Lim D, Fairbanks A J. Chem Sci. 2017;8:1896–1900. doi: 10.1039/C6SC04667C. PubMed DOI PMC

Lim D, Brimble M A, Kowalczyk R, Watson A J A, Fairbanks A J. Angew Chem, Int Ed. 2014;53:11907–11911. doi: 10.1002/anie.201406694. PubMed DOI

Kitamura M, Tashiro N, Miyagawa S, Okauchi T. Synthesis. 2011:1037–1044. doi: 10.1055/s-0030-1258457. DOI

Lakshminarayanan V, Thompson P, Wolfert M A, Buskas T, Bradley J M, Pathangey L B, Madsen C S, Cohen P A, Gendler S J, Boons G-J. Proc Natl Acad Sci U S A. 2012;109:261–266. doi: 10.1073/pnas.1115166109. PubMed DOI PMC

Kaiser A, Gaidzik N, Becker T, Menge C, Groh K, Cai H, Li Y-M, Gerlitzki B, Schmitt E, Kunz H. Angew Chem, Int Ed. 2010;49:3688–3692. doi: 10.1002/anie.201000462. PubMed DOI

Tanaka H, Yoshimura Y, Jørgensen M R, Cuesta-Seijo J A, Hindsgaul O. Angew Chem, Int Ed. 2012;51:11531–11534. doi: 10.1002/anie.201205433. PubMed DOI

Ishihara M, Takagi Y, Li G, Noguchi M, Shoda S-i. Chem Lett. 2013;42:1235–1237. doi: 10.1246/cl.130646. DOI

Tanaka T, Kikuta N, Kimura Y, Shoda S-i. Chem Lett. 2015;44:846–848. doi: 10.1246/cl.150201. DOI

Gudmundsdottir A V, Nitz M. Org Lett. 2008;10:3461–3463. doi: 10.1021/ol801232f. PubMed DOI

Edgar L J G, Dasgupta S, Nitz M. Org Lett. 2012;14:4226–4229. doi: 10.1021/ol3019083. PubMed DOI

Yang D Y, Han O, Liu H W. J Org Chem. 1989;54:5402–5406. doi: 10.1021/jo00283a047. DOI

Beckmann H S G, Wittmann V. Azides in Carbohydrate Chemistry. In: Bräse S, Banert K, editors. Organic Azides: Syntheses and Applications. Chichester, UK: John Wiley & Sons, Ltd; 2009. pp. 469–491. DOI

Williams R J, Paul C E, Nitz M. Carbohydr Res. 2014;386:73–77. doi: 10.1016/j.carres.2013.08.019. PubMed DOI

Armada D H, Santos J T, Richards M R, Cairo C W. Carbohydr Res. 2015;417:109–116. doi: 10.1016/j.carres.2015.09.005. PubMed DOI

Bernardes G J L, Gamblin D P, Davis B G. Angew Chem, Int Ed. 2006;45:4007–4011. doi: 10.1002/anie.200600685. PubMed DOI

Gamblin D P, Garnier P, van Kasteren S, Oldham N J, Fairbanks A J, Davis B G. Angew Chem, Int Ed. 2004;43:828–833. doi: 10.1002/anie.200352975. PubMed DOI

Ozturk T, Ertas E, Mert O. Chem Rev. 2007;107:5210–5278. doi: 10.1021/cr040650b. PubMed DOI

Cheng F, Shang J, Ratner D M. Bioconjugate Chem. 2011;22:50–57. doi: 10.1021/bc1003372. PubMed DOI PMC

Mitsunobu O. Synthesis. 1981:1–28. doi: 10.1055/s-1981-29317. DOI

Grynkiewicz G. Carbohydr Res. 1977;53:C11–C12. doi: 10.1016/S0008-6215(00)85467-1. DOI

Grynkiewicz G. Pol J Chem. 1979;53:1571–1579.

Hain J, Chandrasekaran V, Lindhorst T K. Isr J Chem. 2015;55:383–386. doi: 10.1002/ijch.201400211. DOI

Takeuchi H, Mishiro K, Ueda Y, Fujimori Y, Furuta T, Kawabata T. Angew Chem, Int Ed. 2015;54:6177–6180. doi: 10.1002/anie.201500700. PubMed DOI

Downey A M, Richter C, Pohl R, Mahrwald R, Hocek M. Org Lett. 2015;17:4604–4607. doi: 10.1021/acs.orglett.5b02332. PubMed DOI

Downey A M, Pohl R, Roithová J, Hocek M. Chem – Eur J. 2017;23:3910–3917. doi: 10.1002/chem.201604955. PubMed DOI

Avendaño C, Menéndez J C. Medicinal Chemistry of Anticancer Drugs. Vol. 2. Amsterdam, Netherlands: Elsevier; 2015. Antimetabolites That Interfere with Nucleic Acid Biosynthesis; pp. 41–53. DOI

O'Hagan D, Schaffrath C, Cobb S L, Hamilton J T G, Murphy C D. Nature. 2002;416:279. doi: 10.1038/416279a. PubMed DOI

Wei X. Tetrahedron. 2013;69:3615–3637. doi: 10.1016/j.tet.2013.03.001. DOI

García-Delgado N, Riera A, Verdaguer X. Org Lett. 2007;9:635–638. doi: 10.1021/ol0629420. PubMed DOI

Robinson P L, Barry C N, Kelly J W, Evans S A., Jr J Am Chem Soc. 1985;107:5210–5219. doi: 10.1021/ja00304a030. DOI

Robinson P L, Barry C N, Bass S W, Jarvis S E, Evans S A., Jr J Org Chem. 1983;48:5396–5398. doi: 10.1021/jo00174a059. DOI

Chang B C, Conrad W E, Denney D B, Denney D Z, Edelman R, Powell R L, White D W. J Am Chem Soc. 1971;93:4004–4009. doi: 10.1021/ja00745a031. DOI

Camp D, Jenkins I D. Aust J Chem. 1992;45:47–55. doi: 10.1071/CH9920047. DOI

Pfaffe M, Mahrwald R. Org Lett. 2012;14:792–795. doi: 10.1021/ol203329u. PubMed DOI

Schmalisch S, Mahrwald R. Org Lett. 2013;15:5854–5857. doi: 10.1021/0l402914v. PubMed DOI

Schmid U, Waldmann H. Chem – Eur J. 1998;4:494–501. doi: 10.1002/(Sici)1521-3765(19980310)4:3<494::Aid-Chem494>3.0.Co;2-8. DOI

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...