Strategies toward protecting group-free glycosylation through selective activation of the anomeric center
Status PubMed-not-MEDLINE Language English Country Germany Media electronic-ecollection
Document type Journal Article, Review
PubMed
28694870
PubMed Central
PMC5496566
DOI
10.3762/bjoc.13.123
Knihovny.cz E-resources
- Keywords
- glycosides, glycosylation, oligosaccharides, protecting groups,
- Publication type
- Journal Article MeSH
- Review MeSH
Glycosylation is an immensely important biological process and one that is highly controlled and very efficient in nature. However, in a chemical laboratory the process is much more challenging and usually requires the extensive use of protecting groups to squelch reactivity at undesired reactive moieties. Nonetheless, by taking advantage of the differential reactivity of the anomeric center, a selective activation at this position is possible. As a result, protecting group-free strategies to effect glycosylations are available thanks to the tremendous efforts of many research groups. In this review, we showcase the methods available for the selective activation of the anomeric center on the glycosyl donor and the mechanisms by which the glycosylation reactions take place to illustrate the power these techniques.
See more in PubMed
Khoury G A, Baliban R C, Floudas C A. Sci Rep. 2011;1:No. 90. doi: 10.1038/srep00090. PubMed DOI PMC
Young I S, Baran P S. Nat Chem. 2009;1:193–205. doi: 10.1038/Nchem.216. PubMed DOI
Mahrwald R. Chem Commun. 2015;51:13868–13877. doi: 10.1039/c5cc04386g. PubMed DOI
Saloranta T, Leino R. Synlett. 2015;26:421–425. doi: 10.1055/s-0034-1379979. DOI
Codée J D C, Ali A, Overkleeft H S, van der Marel G A. C R Chim. 2011;14:178–193. doi: 10.1016/j.crci.2010.05.010. DOI
Jensen K J. J Chem Soc, Perkin Trans 1. 2002:2219–2233. doi: 10.1039/b110071h. DOI
Jacobsson M, Malmberg J, Ellervik U. Carbohydr Res. 2006;341:1266–1281. doi: 10.1016/j.carres.2006.04.004. PubMed DOI
Yang Y, Zhang X, Yu B. Nat Prod Rep. 2015;32:1331–1355. doi: 10.1039/c5np00033e. PubMed DOI
Christensen J J, Rytting J H, Izatt R M. J Chem Soc B. 1970:1646–1648. doi: 10.1039/j29700001646. DOI
Feng S T, Bagia C, Mpourmpakis G. J Phys Chem A. 2013;117:5211–5219. doi: 10.1021/jp403355e. PubMed DOI
Villadsen K, Martos-Maldonado M C, Jensen K J, Thygesen M B. ChemBioChem. 2017;18:574–612. doi: 10.1002/cbic.201600582. PubMed DOI
Hancock S M, Vaughan M D, Withers S G. Curr Opin Chem Biol. 2006;10:509–519. doi: 10.1016/j.cbpa.2006.07.015. PubMed DOI
Li C, Wang L-X. Endoglycosidases for the Synthesis of Polysaccharides and Glycoconjugates. In: Baker D C, editor. Advances in Carbohydrate Chemistry and Biochemistry. Vol. 73. Amsterdam, Netherlands: Elsevier; 2016. pp. 73–116. PubMed PMC
Wang X-L. Carbohydr Res. 2008;343:1509–1522. doi: 10.1016/j.carres.2008.03.025. PubMed DOI PMC
Mayer C, Jakeman D L, Mah M, Karjala G, Gal L, Warren R A J, Withers S G. Chem Biol. 2001;8:437–443. doi: 10.1016/S1074-5521(01)00022-9. PubMed DOI
Priyanka P, Parsons T B, Miller A, Platt F M, Fairbanks A J. Angew Chem, Int Ed. 2016;55:5058–5061. doi: 10.1002/anie.201600817. PubMed DOI
Heidecke C D, Ling Z, Bruce N C, Moir J W B, Parsons T B, Fairbanks A J. ChemBioChem. 2008;9:2045–2051. doi: 10.1002/cbic.200800214. PubMed DOI
Varki A, Cummings R D, Esko J D, et al. Essentials of Glycobiology. 2nd ed. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 2009. PubMed
Ihara Y, Inai Y, Ikezaki M, Matsui I-S L, Manabe S, Ito Y. C-Mannosylation: A Modification on Tryptophan in Cellular Proteins. In: Endo T, Seeberger P H, Hart G W, et al., editors. Glycoscience: Biology and Medicine. Japan: Springer; 2014. pp. 1091–1099. DOI
Williams G J, Thorson J S. Natural Product Glycosyltransferases: Properties and Applications. In: Toone E J, editor. Advances in Enzymology and Related Areas of Molecular Biology: And Related Areas of Molecular Biology. Vol. 76. Hoboken, New Jersey: John Wiley & Sons, Inc.; 2009. pp. 55–119. PubMed DOI
Schuman B, Evans S V, Fyles T M. PLoS One. 2013;8:e71077. doi: 10.1371/journal.pone.0071077. PubMed DOI PMC
Zhang C S, Griffith B R, Fu Q, Albermann C, Fu X, Lee I-K, Li L, Thorson J S. Science. 2006;313:1291–1294. doi: 10.1126/science.1130028. PubMed DOI
Votruba I, Holý A, Dvořáková H, Günter J, Hocková D, Hřebabecký H, Cihlar T, Masojídková M. Collect Czech Chem Commun. 1994;59:2303–2330. doi: 10.1135/cccc19942303. DOI
Romeo G, Chiacchio U, Corsaro A, Merino P. Chem Rev. 2010;110:3337–3370. doi: 10.1021/cr800464r. PubMed DOI
Fresco-Taboada A, de la Mata I, Arroyo M, Fernández-Lucas J. Appl Microbiol Biotechnol. 2013;97:3773–3785. doi: 10.1007/s00253-013-4816-y. PubMed DOI
Stepchenko V A, Miroshnikov A I, Seela F, Mikhailopulo I A. Beilstein J Org Chem. 2016;12:2588–2601. doi: 10.3762/bjoc.12.254. PubMed DOI PMC
Fischer E. Ber Dtsch Chem Ges. 1895;28:1145–1167. doi: 10.1002/cber.189502801248. DOI
Fischer E. Ber Dtsch Chem Ges. 1893;26:2400–2412. doi: 10.1002/cber.18930260327. DOI
Ferrières V, Bertho J-N, Plusquellec D. Tetrahedron Lett. 1995;36:2749–2752. doi: 10.1016/0040-4039(95)00356-H. DOI
Bertho J-N, Ferrières V, Plusquellec D. J Chem Soc, Chem Commun. 1995:1391–1393. doi: 10.1039/c39950001391. DOI
Velty R, Benvegnu T, Gelin M, Privat E, Plusquellec D. Carbohydr Res. 1997;299:7–14. doi: 10.1016/S0008-6215(96)00268-6. DOI
Regeling H, Zwanenburg B, Chittenden G J F. Carbohydr Res. 1998;314:267–272. doi: 10.1016/S0008-6215(98)00308-5. DOI
Ferrières V, Benvegnu T, Lefeuvre M, Plusquellec D, Mackenzie G, Watson M J, Haley J A, Goodby J W, Pindak R, Durbin M K. J Chem Soc, Perkin Trans 2. 1999:951–959. doi: 10.1039/a900192a. DOI
Joniak D, Poláková M. J Serb Chem Soc. 2001;66:81–86.
Roy D K, Bordoloi M. J Carbohydr Chem. 2008;27:300–307. doi: 10.1080/07328300802107437. DOI
Bornaghi L F, Poulsen S-A. Tetrahedron Lett. 2005;46:3485–3488. doi: 10.1016/j.tetlet.2005.03.126. DOI
Hanessian S, Lou B. Chem Rev. 2000;100:4443–4464. doi: 10.1021/cr9903454. PubMed DOI
Capon B. Chem Rev. 1969;69:407–498. doi: 10.1021/cr60260a001. DOI
Sharma D K, Lambu M R, Sidiq T, Khajuria A, Tripathi A K, Yousuf S K, Mukherjee D. RSC Adv. 2013;3:11450–11455. doi: 10.1039/c3ra41050a. DOI
Christina A E, van der Marel G A, Codée J D C. Recent Developments in the Construction of cis-Glycosidic Linkages. In: Werz D B, Vidal S, editors. Modern Synthetic Methods in Carbohydrate Chemistry: From Monosaccharides to Complex Glycoconjugates. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2014. DOI
Nigudkar S S, Demchenko A V. Chem Sci. 2015;6:2687–2704. doi: 10.1039/c5sc00280j. PubMed DOI PMC
St-Pierre G, Hanessian S. Org Lett. 2016;18:3106–3109. doi: 10.1021/acs.orglett.6b01263. PubMed DOI
Euzen R, Ferrières V, Plusquellec D. J Org Chem. 2005;70:847–855. doi: 10.1021/jo0484934. PubMed DOI
Poulin M B, Lowary T L. J Org Chem. 2016;81:8123–8130. doi: 10.1021/acs.joc.6b01501. PubMed DOI
Poulin M B, Shi Y, Protsko C, Dalrymple S A, Sanders D A R, Pinto B M, Lowary T L. ChemBioChem. 2014;15:47–56. doi: 10.1002/cbic.201300653. PubMed DOI
Ferrières V, Gelin M, Boulch R, Toupet L, Plusquellec D. Carbohydr Res. 1998;314:79–83. doi: 10.1016/S0008-6215(98)00290-0. DOI
Ferrières V, Bertho J-N, Plusquellec D. Carbohydr Res. 1998;311:25–35. doi: 10.1016/S0008-6215(98)00197-9. DOI
Ferrières V, Blanchard S, Fischer D, Plusquellec D. Bioorg Med Chem Lett. 2002;12:3515–3518. doi: 10.1016/S0960-894x(02)00822-3. PubMed DOI
Euzen R, Guégan J-P, Ferrières V, Plusquellec D. J Org Chem. 2007;72:5743–5747. doi: 10.1021/jo070741j. PubMed DOI
Peltier P, Daniellou R, Nugier-Chauvin C, Ferrières V. Org Lett. 2007;9:5227–5230. doi: 10.1021/ol702392x. PubMed DOI
Davis B G, Wood S D, Maughan M A T. Can J Chem. 2002;80:555–558. doi: 10.1139/V02-029. DOI
Martin A, Arda A, Désiré J, Martin-Mingot A, Probst N, Sinaÿ P, Jiménez-Barbero J, Thibaudeau S, Blériot Y. Nat Chem. 2016;8:186–191. doi: 10.1038/Nchem.2399. PubMed DOI
Bohé L, Crich D. C R Chim. 2011;14:3–16. doi: 10.1016/j.crci.2010.03.016. DOI
Lemieux R U, Hendriks K B, Stick R V, James K. J Am Chem Soc. 1975;97:4056–4062. doi: 10.1021/ja00847a032. DOI
Ayala L, Lucero C G, Romero J A C, Tabacco S A, Woerpel K A. J Am Chem Soc. 2003;125:15521–15528. doi: 10.1021/ja037935a. PubMed DOI
Meng B, Zhu Z, Baker D C. Org Biomol Chem. 2014;12:5182–5191. doi: 10.1039/c4ob00626g. PubMed DOI
Pelletier G, Zwicker A, Allen C L, Schepartz A, Miller S J. J Am Chem Soc. 2016;138:3175–3182. doi: 10.1021/jacs.5b13384. PubMed DOI PMC
Gloster T M. Curr Opin Struct Biol. 2014;28:131–141. doi: 10.1016/j.sbi.2014.08.012. PubMed DOI PMC
Lairson L L, Henrissat B, Davies G J, Withers S G. Annu Rev Biochem. 2008;77:521–555. doi: 10.1146/annurev.biochem.76.061005.092322. PubMed DOI
Magnet S, Blanchard J S. Chem Rev. 2005;105:477–498. doi: 10.1021/cr0301088. PubMed DOI
McKay M J, Nguyen H M. ACS Catal. 2012;2:1563–1595. doi: 10.1021/cs3002513. PubMed DOI PMC
Mamidyala S K, Finn M G. J Org Chem. 2009;74:8417–8420. doi: 10.1021/jo901857x. PubMed DOI
Hotha S, Kashyap S. J Am Chem Soc. 2006;128:17153–17154. doi: 10.1021/ja067885k. PubMed DOI
Hasegawa T, Numata M, Okumura S, Kimura T, Sakurai K, Shinkai S. Org Biomol Chem. 2007;5:2404–2412. doi: 10.1039/b703720a. PubMed DOI
Zhu F, Rourke M J, Yang T, Rodriguez J, Walczak M A. J Am Chem Soc. 2016;138:12049–12052. doi: 10.1021/jacs.6b07891. PubMed DOI
Bililign T, Griffith B R, Thorson J S. Nat Prod Rep. 2005;22:742–760. doi: 10.1039/b407364a. PubMed DOI
De Clercq E. J Med Chem. 2016;59:2301–2311. doi: 10.1021/acs.jmedchem.5b01157. PubMed DOI
Noguchi M, Tanaka T, Gyakushi H, Kobayashi A, Shoda S-i. J Org Chem. 2009;74:2210–2212. doi: 10.1021/jo8024708. PubMed DOI
Noguchi M, Fujieda T, Huang W C, Ishihara M, Kobayashi A, Shoda S-i. Helv Chim Acta. 2012;95:1928–1936. doi: 10.1002/hlca.201200414. DOI
Noguchi M, Kobayashi A, Shoda S-i. Trends Glycosci Glycotechnol. 2015;27:E35–E42. doi: 10.4052/tigg.1505.2E. DOI
Tanaka T, Huang W C, Noguchi M, Kobayashi A, Shoda S-i. Tetrahedron Lett. 2009;50:2154–2157. doi: 10.1016/j.tetlet.2009.02.171. DOI
Yoshida N, Tanaka T, Noguchi M, Kobayashi A, Ishikura K, Ikenuma T, Seno H, Watanabe T, Kohri M, Shoda S-i. Chem Lett. 2012;41:689–690. doi: 10.1246/cl.2012.689. DOI
Tanaka T, Nagai H, Noguchi M, Kobayashi A, Shoda S-i. Chem Commun. 2009:3378–3379. doi: 10.1039/b905761g. PubMed DOI
Li G, Noguchi M, Kashiwagura H, Tanaka Y, Serizawa K, Shoda S-i. Tetrahedron Lett. 2016;57:3529–3531. doi: 10.1016/j.tetlet.2016.06.106. DOI
Tanaka T, Matsumoto T, Noguchi M, Kobayashi A, Shoda S-i. Chem Lett. 2009;38:458–459. doi: 10.1246/cl.2009.458. DOI
Yoshida N, Noguchi M, Tanaka T, Matsumoto T, Aida N, Ishihara M, Kobayashi A, Shoda S-i. Chem – Asian J. 2011;6:1876–1885. doi: 10.1002/asia.201000896. PubMed DOI
Thamsen J. Acta Chem Scand. 1952;6:270–284. doi: 10.3891/acta.chem.scand.06-0270. DOI
Yoshida N, Fujieda T, Kobayashi A, Ishihara M, Noguchi M, Shoda S-i. Chem Lett. 2013;42:1038–1039. doi: 10.1246/cl.130379. DOI
Novoa A, Barluenga S, Serba C, Winssinger N. Chem Commun. 2013;49:7608–7610. doi: 10.1039/c3cc43458c. PubMed DOI
Köhling S, Exner M P, Nojoumi S, Schiller J, Budisa N, Rademann J. Angew Chem, Int Ed. 2016;55:15510–15514. doi: 10.1002/anie.201607228. PubMed DOI
Acevedo-Rocha C G, Hoesl M G, Nehring S, Royter M, Wolschner C, Wiltschi B, Antranikian G, Budisa N. Catal Sci Technol. 2013;3:1198–1201. doi: 10.1039/c3cy20712a. DOI
Exner M P, Köhling S, Rivollier J, Gosling S, Srivastava P, Palyancheva Z I, Herdewijn P, Heck M-P, Rademann J, Budisa N. Molecules. 2016;21:287–295. doi: 10.3390/molecules21030287. PubMed DOI PMC
Alexander S R, Lim D, Amso Z, Brimble M A, Fairbanks A J. Org Biomol Chem. 2017;15:2152–2156. doi: 10.1039/c7ob00112f. PubMed DOI
Lim D, Fairbanks A J. Chem Sci. 2017;8:1896–1900. doi: 10.1039/C6SC04667C. PubMed DOI PMC
Lim D, Brimble M A, Kowalczyk R, Watson A J A, Fairbanks A J. Angew Chem, Int Ed. 2014;53:11907–11911. doi: 10.1002/anie.201406694. PubMed DOI
Kitamura M, Tashiro N, Miyagawa S, Okauchi T. Synthesis. 2011:1037–1044. doi: 10.1055/s-0030-1258457. DOI
Lakshminarayanan V, Thompson P, Wolfert M A, Buskas T, Bradley J M, Pathangey L B, Madsen C S, Cohen P A, Gendler S J, Boons G-J. Proc Natl Acad Sci U S A. 2012;109:261–266. doi: 10.1073/pnas.1115166109. PubMed DOI PMC
Kaiser A, Gaidzik N, Becker T, Menge C, Groh K, Cai H, Li Y-M, Gerlitzki B, Schmitt E, Kunz H. Angew Chem, Int Ed. 2010;49:3688–3692. doi: 10.1002/anie.201000462. PubMed DOI
Tanaka H, Yoshimura Y, Jørgensen M R, Cuesta-Seijo J A, Hindsgaul O. Angew Chem, Int Ed. 2012;51:11531–11534. doi: 10.1002/anie.201205433. PubMed DOI
Ishihara M, Takagi Y, Li G, Noguchi M, Shoda S-i. Chem Lett. 2013;42:1235–1237. doi: 10.1246/cl.130646. DOI
Tanaka T, Kikuta N, Kimura Y, Shoda S-i. Chem Lett. 2015;44:846–848. doi: 10.1246/cl.150201. DOI
Gudmundsdottir A V, Nitz M. Org Lett. 2008;10:3461–3463. doi: 10.1021/ol801232f. PubMed DOI
Edgar L J G, Dasgupta S, Nitz M. Org Lett. 2012;14:4226–4229. doi: 10.1021/ol3019083. PubMed DOI
Yang D Y, Han O, Liu H W. J Org Chem. 1989;54:5402–5406. doi: 10.1021/jo00283a047. DOI
Beckmann H S G, Wittmann V. Azides in Carbohydrate Chemistry. In: Bräse S, Banert K, editors. Organic Azides: Syntheses and Applications. Chichester, UK: John Wiley & Sons, Ltd; 2009. pp. 469–491. DOI
Williams R J, Paul C E, Nitz M. Carbohydr Res. 2014;386:73–77. doi: 10.1016/j.carres.2013.08.019. PubMed DOI
Armada D H, Santos J T, Richards M R, Cairo C W. Carbohydr Res. 2015;417:109–116. doi: 10.1016/j.carres.2015.09.005. PubMed DOI
Bernardes G J L, Gamblin D P, Davis B G. Angew Chem, Int Ed. 2006;45:4007–4011. doi: 10.1002/anie.200600685. PubMed DOI
Gamblin D P, Garnier P, van Kasteren S, Oldham N J, Fairbanks A J, Davis B G. Angew Chem, Int Ed. 2004;43:828–833. doi: 10.1002/anie.200352975. PubMed DOI
Ozturk T, Ertas E, Mert O. Chem Rev. 2007;107:5210–5278. doi: 10.1021/cr040650b. PubMed DOI
Cheng F, Shang J, Ratner D M. Bioconjugate Chem. 2011;22:50–57. doi: 10.1021/bc1003372. PubMed DOI PMC
Mitsunobu O. Synthesis. 1981:1–28. doi: 10.1055/s-1981-29317. DOI
Grynkiewicz G. Carbohydr Res. 1977;53:C11–C12. doi: 10.1016/S0008-6215(00)85467-1. DOI
Grynkiewicz G. Pol J Chem. 1979;53:1571–1579.
Hain J, Chandrasekaran V, Lindhorst T K. Isr J Chem. 2015;55:383–386. doi: 10.1002/ijch.201400211. DOI
Takeuchi H, Mishiro K, Ueda Y, Fujimori Y, Furuta T, Kawabata T. Angew Chem, Int Ed. 2015;54:6177–6180. doi: 10.1002/anie.201500700. PubMed DOI
Downey A M, Richter C, Pohl R, Mahrwald R, Hocek M. Org Lett. 2015;17:4604–4607. doi: 10.1021/acs.orglett.5b02332. PubMed DOI
Downey A M, Pohl R, Roithová J, Hocek M. Chem – Eur J. 2017;23:3910–3917. doi: 10.1002/chem.201604955. PubMed DOI
Avendaño C, Menéndez J C. Medicinal Chemistry of Anticancer Drugs. Vol. 2. Amsterdam, Netherlands: Elsevier; 2015. Antimetabolites That Interfere with Nucleic Acid Biosynthesis; pp. 41–53. DOI
O'Hagan D, Schaffrath C, Cobb S L, Hamilton J T G, Murphy C D. Nature. 2002;416:279. doi: 10.1038/416279a. PubMed DOI
Wei X. Tetrahedron. 2013;69:3615–3637. doi: 10.1016/j.tet.2013.03.001. DOI
García-Delgado N, Riera A, Verdaguer X. Org Lett. 2007;9:635–638. doi: 10.1021/ol0629420. PubMed DOI
Robinson P L, Barry C N, Kelly J W, Evans S A., Jr J Am Chem Soc. 1985;107:5210–5219. doi: 10.1021/ja00304a030. DOI
Robinson P L, Barry C N, Bass S W, Jarvis S E, Evans S A., Jr J Org Chem. 1983;48:5396–5398. doi: 10.1021/jo00174a059. DOI
Chang B C, Conrad W E, Denney D B, Denney D Z, Edelman R, Powell R L, White D W. J Am Chem Soc. 1971;93:4004–4009. doi: 10.1021/ja00745a031. DOI
Camp D, Jenkins I D. Aust J Chem. 1992;45:47–55. doi: 10.1071/CH9920047. DOI
Pfaffe M, Mahrwald R. Org Lett. 2012;14:792–795. doi: 10.1021/ol203329u. PubMed DOI
Schmalisch S, Mahrwald R. Org Lett. 2013;15:5854–5857. doi: 10.1021/0l402914v. PubMed DOI
Schmid U, Waldmann H. Chem – Eur J. 1998;4:494–501. doi: 10.1002/(Sici)1521-3765(19980310)4:3<494::Aid-Chem494>3.0.Co;2-8. DOI