• This record comes from PubMed

Neuronal Intra-Individual Variability Masks Response Selection Differences between ADHD Subtypes-A Need to Change Perspectives

. 2017 ; 11 () : 329. [epub] 20170628

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Due to the high intra-individual variability in attention deficit/hyperactivity disorder (ADHD), there may be considerable bias in knowledge about altered neurophysiological processes underlying executive dysfunctions in patients with different ADHD subtypes. When aiming to establish dimensional cognitive-neurophysiological constructs representing symptoms of ADHD as suggested by the initiative for Research Domain Criteria, it is crucial to consider such processes independent of variability. We examined patients with the predominantly inattentive subtype (attention deficit disorder, ADD) and the combined subtype of ADHD (ADHD-C) in a flanker task measuring conflict control. Groups were matched for task performance. Besides using classic event-related potential (ERP) techniques and source localization, neurophysiological data was also analyzed using residue iteration decomposition (RIDE) to statistically account for intra-individual variability and S-LORETA to estimate the sources of the activations. The analysis of classic ERPs related to conflict monitoring revealed no differences between patients with ADD and ADHD-C. When individual variability was accounted for, clear differences became apparent in the RIDE C-cluster (analog to the P3 ERP-component). While patients with ADD distinguished between compatible and incompatible flanker trials early on, patients with ADHD-C seemed to employ more cognitive resources overall. These differences are reflected in inferior parietal areas. The study demonstrates differences in neuronal mechanisms related to response selection processes between ADD and ADHD-C which, according to source localization, arise from the inferior parietal cortex. Importantly, these differences could only be detected when accounting for intra-individual variability. The results imply that it is very likely that differences in neurophysiological processes between ADHD subtypes are underestimated and have not been recognized because intra-individual variability in neurophysiological data has not sufficiently been taken into account.

See more in PubMed

Ahmadi N., Mohammadi M. R., Araghi S. M., Zarafshan H. (2014). Neurocognitive profile of children with attention deficit hyperactivity disorders (ADHD): a comparison between subtypes. Iran. J. Psychiatry 9, 197–202. PubMed PMC

Albrecht B., Brandeis D., Uebel H., Heinrich H., Mueller U. C., Hasselhorn M., et al. . (2008). Action monitoring in boys with attention-deficit/hyperactivity disorder, their nonaffected siblings and normal control subjects: evidence for an endophenotype. Biol. Psychiatry 64, 615–625. 10.1016/j.biopsych.2007.12.016 PubMed DOI PMC

Barkley R. A. (1997). Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol. Bull. 121, 65–94. 10.1037//0033-2909.121.1.65 PubMed DOI

Beste C., Domschke K., Kolev V., Yordanova J., Baffa A., Falkenstein M., et al. . (2010). Functional 5-HT1a receptor polymorphism selectively modulates error-specific subprocesses of performance monitoring. Hum. Brain Mapp. 31, 621–630. 10.1002/hbm.20892 PubMed DOI PMC

Beste C., Konrad C., Uhlmann C., Arolt V., Zwanzger P., Domschke K. (2013). Neuropeptide S receptor (NPSR1) gene variation modulates response inhibition and error monitoring. Neuroimage 71, 1–9. 10.1016/j.neuroimage.2013.01.004 PubMed DOI

Beste C., Mückschel M., Elben S., J Hartmann C., McIntyre C. C., Saft C., et al. . (2015). Behavioral and neurophysiological evidence for the enhancement of cognitive control under dorsal pallidal deep brain stimulation in Huntington’s disease. Brain Struct. Funct. 220, 2441–2448. 10.1007/s00429-014-0805-x PubMed DOI

Bluschke A., Broschwitz F., Kohl S., Roessner V., Beste C. (2016a). The neuronal mechanisms underlying improvement of impulsivity in ADHD by theta/beta neurofeedback. Sci. Rep. 6:31178. 10.1038/srep31178 PubMed DOI PMC

Bluschke A., Chmielewski W. X., Roessner V., Beste C. (2016b). Intact context-dependent modulation of conflict monitoring in childhood ADHD. J. Atten. Disord. [Epub ahead of print]. 10.1177/1087054716643388 PubMed DOI

Bluschke A., Roessner V., Beste C. (2016c). Specific cognitive-neurophysiological processes predict impulsivity in the childhood attention-deficit/hyperactivity disorder combined subtype. Psychol. Med. 46, 1277–1287. 10.1017/s0033291715002822 PubMed DOI

Bluschke A., von der Hagen M., Papenhagen K., Roessner V., Beste C. (2017). Response inhibition in Attention deficit disorder and neurofibromatosis type 1 - clinically similar, neurophysiologically different. Sci. Rep. 7:43929. 10.1038/srep43929 PubMed DOI PMC

Bush G., Holmes J., Shin L. M., Surman C., Makris N., Mick E., et al. . (2013). Atomoxetine increases fronto-parietal functional MRI activation in attention-deficit/hyperactivity disorder: a pilot study. Psychiatry Res. 211, 88–91. 10.1016/j.pscychresns.2012.09.004 PubMed DOI PMC

Cao J., Wang S., Ren Y., Zhang Y., Cai J., Tu W., et al. . (2013). Interference control in 6–11 year-old children with and without ADHD: behavioral and ERP study. Int. J. Dev. Neurosci. 31, 342–349. 10.1016/j.ijdevneu.2013.04.005 PubMed DOI

Chmielewski W. X., Mückschel M., Roessner V., Beste C. (2014). Expectancy effects during response selection modulate attentional selection and inhibitory control networks. Behav. Brain Res. 274, 53–61. 10.1016/j.bbr.2014.08.006 PubMed DOI

Dippel G., Beste C. (2015). A causal role of the right inferior frontal cortex in implementing strategies for multi-component behaviour. Nat. Commun. 6:6587. 10.1038/ncomms7587 PubMed DOI

Dobson-Patterson R., O’Gorman J. G., Chan R. C. K., Shum D. H. K. (2016). ADHD subtypes and neuropsychological performance in an adult sample. Res. Dev. Disabil. 55, 55–63. 10.1016/j.ridd.2016.03.013 PubMed DOI

Döpfner M., Görtz-Dorten A., Lehmkuhl G. (2008). Diagnostik-System für Psychische Störungen im Kindes- und Jugendalter Nach ICD-10 und DSM-IV, DISYPS-II. Bern: Huber.

Geng J. J., Vossel S. (2013). Re-evaluating the role of TPJ in attentional control: contextual updating? Neurosci. Biobehav. Rev. 37, 2608–2620. 10.1016/j.neubiorev.2013.08.010 PubMed DOI PMC

Ghanizadeh A. (2010). Predictors of different types of developmental coordination problems in ADHD: the effect of age, gender, ADHD symptom severity and comorbidities. Neuropediatrics 41, 176–181. 10.1055/s-0030-1267962 PubMed DOI

Gohil K., Hahne A., Beste C. (2016). Improvements of sensorimotor processes during action cascading associated with changes in sensory processing architecture-insights from sensory deprivation. Sci. Rep. 6:28259. 10.1038/srep28259 PubMed DOI PMC

Gong J., Yuan J., Wang S., Shi L., Cui X., Luo X. (2014). Feedback-related negativity in children with two subtypes of attention deficit hyperactivity disorder. PloS One 9:e99570. 10.1371/journal.pone.0099570 PubMed DOI PMC

Henríquez-Henríquez M. P., Billeke P., Henríquez H., Zamorano F. J., Rothhammer F., Aboitiz F. (2014). Intra-individual response variability assessed by ex-gaussian analysis may be a new endophenotype for attention-deficit/hyperactivity disorder. Front. Psychiatry 5:197. 10.3389/fpsyt.2014.00197 PubMed DOI PMC

Houghton S., Douglas G., West J., Whiting K., Wall M., Langsford S., et al. . (1999). Differential patterns of executive function in children with attention-deficit hyperactivity disorder according to gender and subtype. J. Child Neurol. 14, 801–805. 10.1177/088307389901401206 PubMed DOI

Iannaccone R., Hauser T. U., Ball J., Brandeis D., Walitza S., Brem S. (2015). Classifying adolescent attention-deficit/hyperactivity disorder (ADHD) based on functional and structural imaging. Eur. Child Adolesc. Psychiatry 24, 1279–1289. 10.1007/s00787-015-0678-4 PubMed DOI

Insel T., Cuthbert B., Garvey M., Heinssen R., Pine D. S., Quinn K., et al. . (2010). Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am. J. Psychiatry 167, 748–751. 10.1176/appi.ajp.2010.09091379 PubMed DOI

Johnstone S. J., Clarke A. R. (2009). Dysfunctional response preparation and inhibition during a visual Go/No-go task in children with two subtypes of attention-deficit hyperactivity disorder. Psychiatry Res. 166, 223–237. 10.1016/j.psychres.2008.03.005 PubMed DOI

Jonkman L. M., Kemner C., Verbaten M. N., Van Engeland H., Kenemans J. L., Camfferman G., et al. . (1999). Perceptual and response interference in children with attention-deficit hyperactivity disorder and the effects of methylphenidate. Psychophysiology 36, 419–429. 10.1017/s0048577299971032 PubMed DOI

Kenemans J. L., Bekker E. M., Lijffijt M., Overtoom C. C. E., Jonkman L. M., Verbaten M. N. (2005). Attention deficit and impulsivity: selecting, shifting, and stopping. Int. J. Psychophysiol. 58, 59–70. 10.1016/j.ijpsycho.2005.03.009 PubMed DOI

Keye D., Wilhelm O., Oberauer K., Stürmer B. (2013). Individual differences in response conflict adaptations. Front. Psychol. 4:947. 10.3389/fpsyg.2013.00947 PubMed DOI PMC

Kieling R., Rohde L. A. (2012). ADHD in children and adults: diagnosis and prognosis. Curr. Top. Behav. Neurosci. 9, 1–16. 10.1007/7854_2010_115 PubMed DOI

Lin H.-Y., Hwang-Gu S.-L., Gau S. S.-F. (2015). Intra-individual reaction time variability based on ex-Gaussian distribution as a potential endophenotype for attention-deficit/hyperactivity disorder. Acta Psychiatr. Scand. 132, 39–50. 10.1111/acps.12393 PubMed DOI

Marco-Pallarés J., Grau C., Ruffini G. (2005). Combined ICA-LORETA analysis of mismatch negativity. Neuroimage 25, 471–477. 10.1016/j.neuroimage.2004.11.028 PubMed DOI

Mazaheri A., Fassbender C., Coffey-Corina S., Hartanto T. A., Schweitzer J. B., Mangun G. R. (2014). Differential oscillatory electroencephalogram between attention-deficit/hyperactivity disorder subtypes and typically developing adolescents. Biol. Psychiatry 76, 422–429. 10.1016/j.biopsych.2013.08.023 PubMed DOI PMC

Mazziotta J., Toga A., Evans A., Fox P., Lancaster J., Zilles K., et al. . (2001). A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (ICBM). Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 1293–1322. 10.1098/rstb.2001.0915 PubMed DOI PMC

Mückschel M., Chmielewski W., Ziemssen T., Beste C. (2017). The norepinephrine system shows information-content specific properties during cognitive control—Evidence from EEG and pupillary responses. Neuroimage 149, 44–52. 10.1016/j.neuroimage.2017.01.036 PubMed DOI

Mückschel M., Stock A.-K., Beste C. (2014). Psychophysiological mechanisms of interindividual differences in goal activation modes during action cascading. Cereb Cortex. 24, 2120–2129. 10.1093/cercor/bht066 PubMed DOI

Mullane J. C., Corkum P. V., Klein R. M., McLaughlin E. (2009). Interference control in children with and without ADHD: a systematic review of flanker and simon task performance. Child Neuropsychol. 15, 321–342. 10.1080/09297040802348028 PubMed DOI

Nikolas M. A., Nigg J. T. (2013). Neuropsychological performance and attention-deficit hyperactivity disorder subtypes and symptom dimensions. Neuropsychology 27, 107–120. 10.1037/a0030685 PubMed DOI PMC

Nunez P. L., Pilgreen K. L. (1991). The spline-Laplacian in clinical neurophysiology: a method to improve EEG spatial resolution. J. Clin. Neurophysiol. 8, 397–413. 10.1097/00004691-199110000-00005 PubMed DOI

Ouyang G., Herzmann G., Zhou C., Sommer W. (2011). Residue iteration decomposition (RIDE): a new method to separate ERP components on the basis of latency variability in single trials. Psychophysiology 48, 1631–1647. 10.1111/j.1469-8986.2011.01269.x PubMed DOI

Ouyang G., Hildebrandt A., Sommer W., Zhou C. (2017). Exploiting the intra-subject latency variability from single-trial event-related potentials in the P3 time range: a review and comparative evaluation of methods. Neurosci. Biobehav. Rev. 75, 1–21. 10.1016/j.neubiorev.2017.01.023 PubMed DOI

Ouyang G., Sommer W., Zhou C. (2015a). A toolbox for residue iteration decomposition (RIDE)—a method for the decomposition, reconstruction, and single trial analysis of event related potentials. J. Neurosci. Methods 250, 7–21. 10.1016/j.jneumeth.2014.10.009 PubMed DOI

Ouyang G., Sommer W., Zhou C. (2015b). Updating and validating a new framework for restoring and analyzing latency-variable ERP components from single trials with residue iteration decomposition (RIDE). Psychophysiology 52, 839–856. 10.1111/psyp.12411 PubMed DOI

Pascual-Marqui R. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 24, 5–12. PubMed

Poldrack R. A. (2011). Inferring mental states from neuroimaging data: from reverse inference to large-scale decoding. Neuron 72, 692–697. 10.1016/j.neuron.2011.11.001 PubMed DOI PMC

Poldrack R. A. (2006). Can cognitive processes be inferred from neuroimaging data? Trends Cogn. Sci. 10, 59–63. 10.1016/j.tics.2005.12.004 PubMed DOI

Randall K. D., Brocki K. C., Kerns K. A. (2009). Cognitive control in children with ADHD-C: how efficient are they? Child Neuropsychol. 15, 163–178. 10.1080/09297040802464148 PubMed DOI

Roberts W., Milich R., Fillmore M. T. (2012). Constraints on information processing capacity in adults with ADHD. Neuropsychology 26, 695–703. 10.1037/a0030296 PubMed DOI PMC

Saville C. W. N., Feige B., Kluckert C., Bender S., Biscaldi M., Berger A., et al. . (2015). Increased reaction time variability in attention-deficit hyperactivity disorder as a response-related phenomenon: evidence from single-trial event-related potentials. J. Child Psychol. Psychiatry 56, 801–813. 10.1111/jcpp.12348 PubMed DOI

Sekihara K., Sahani M., Nagarajan S. S. (2005). Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction. Neuroimage 25, 1056–1067. 10.1016/j.neuroimage.2004.11.051 PubMed DOI PMC

Stroux D., Shushakova A., Geburek-Höfer A. J., Ohrmann P., Rist F., Pedersen A. (2016). Deficient interference control during working memory updating in adults with ADHD: an event-related potential study. Clin. Neurophysiol. 127, 452–463. 10.1016/j.clinph.2015.05.021 PubMed DOI

Twomey D. M., Murphy P. R., Kelly S. P., O’Connell R. G. (2015). The classic P300 encodes a build-to-threshold decision variable. Eur. J. Neurosci. 42, 1636–1643. 10.1111/ejn.12936 PubMed DOI

van Meel C. S., Heslenfeld D. J., Oosterlaan J., Sergeant J. A. (2007). Adaptive control deficits in attention-deficit/hyperactivity disorder (ADHD): the role of error processing. Psychiatry Res. 151, 211–220. 10.1016/j.psychres.2006.05.011 PubMed DOI

Verleger R., Metzner M. F., Ouyang G., Smigasiewicz K., Zhou C. (2014). Testing the stimulus-to-response bridging function of the oddball-P3 by delayed response signals and residue iteration decomposition (RIDE). Neuroimage 100, 271–280. 10.1016/j.neuroimage.2014.06.036 PubMed DOI

Wolff N., Mückschel M., Beste C. (2017). Neural mechanisms and functional neuroanatomical networks during memory and cue-based task switching as revealed by residue iteration decomposition (RIDE) based source localization. Brain Struct. Funct. [Epub ahead of print]. 10.1007/s00429-017-1437-8 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...