Neurophysiological mechanisms of interval timing dissociate inattentive and combined ADHD subtypes

. 2018 Feb 01 ; 8 (1) : 2033. [epub] 20180201

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29391481
Odkazy

PubMed 29391481
PubMed Central PMC5794858
DOI 10.1038/s41598-018-20484-0
PII: 10.1038/s41598-018-20484-0
Knihovny.cz E-zdroje

It is far from conclusive what distinguishes the inattentive (ADD) and the combined (ADHD-C) subtype of ADHD on the neuronal level. Theoretical considerations suggest that especially interval timing processes may dissociate these subtypes from each other. Combining high-density EEG recordings with source localization analyses, we examine whether there are ADHD-subtype specific modulations of neurophysiological processes subserving interval timing in matched groups of ADD (n = 16), ADHD-C (n = 16) and controls (n = 16). Patients with ADD and ADHD-C show deficits in interval timing, which was correlated with the degree of inattention in ADD patients. Compared to healthy controls, patients with ADHD-C display a somewhat weaker, yet consistent response preparation process (contingent negative variation, CNV). In patients with ADD, the early CNV is interrupted, indicating an oscillatory disruption of the interval timing process. This is associated with activations in the supplemental motor areas and the middle frontal gyrus. Patients with ADD display adequate feedback learning mechanisms (feedback-related negativity, FRN), which is not the case in patients with ADHD-C. The results suggest that altered pacemaker-accumulation processes in medial frontal structures distinguish the ADD from the ADHD-C subtype. Particularly in patients with ADD phasic interruptions of preparatory neurophysiological processes are evident, making this a possible diagnostic feature.

Zobrazit více v PubMed

Greenhill, L. L., Posner, K., Vaughan, B. S. & Kratochvil, C. J. Attention deficit hyperactivity disorder in preschool children. Child Adolesc. Psychiatr. Clin. N. Am. 17, 347–366, ix (2008). PubMed

Kieling R, Rohde LA. ADHD in children and adults: diagnosis and prognosis. Curr. Top. Behav. Neurosci. 2012;9:1–16. PubMed

Thomas R, Sanders S, Doust J, Beller E, Glasziou P. Prevalence of attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. Pediatrics. 2015;135:e994–1001. doi: 10.1542/peds.2014-3482. PubMed DOI

Shallice T, et al. Executive Function Profile of Children With Attention Deficit Hyperactivity Disorder. Dev. Neuropsychol. 2002;21:43–71. doi: 10.1207/S15326942DN2101_3. PubMed DOI

Castellanos FX, Sonuga-Barke EJS, Milham MP, Tannock R. Characterizing cognition in ADHD: beyond executive dysfunction. Trends Cogn. Sci. 2006;10:117–123. doi: 10.1016/j.tics.2006.01.011. PubMed DOI

Kofler MJ, et al. Working memory deficits and social problems in children with ADHD. J. Abnorm. Child Psychol. 2011;39:805–817. doi: 10.1007/s10802-011-9492-8. PubMed DOI

Mohr-Jensen C, Steinhausen H-C. A meta-analysis and systematic review of the risks associated with childhood attention-deficit hyperactivity disorder on long-term outcome of arrests, convictions, and incarcerations. Clin. Psychol. Rev. 2016;48:32–42. doi: 10.1016/j.cpr.2016.05.002. PubMed DOI

Nikolas MA, Nigg JT. Neuropsychological performance and attention-deficit hyperactivity disorder subtypes and symptom dimensions. Neuropsychology. 2013;27:107–120. doi: 10.1037/a0030685. PubMed DOI PMC

Bos DJ, et al. Structural and functional connectivity in children and adolescents with and without attention deficit/hyperactivity disorder. J. Child Psychol. Psychiatry. 2017;58:810–818. doi: 10.1111/jcpp.12712. PubMed DOI

Brieber S, et al. Structural brain abnormalities in adolescents with autism spectrum disorder and patients with attention deficit/hyperactivity disorder. J. Child Psychol. Psychiatry. 2007;48:1251–1258. doi: 10.1111/j.1469-7610.2007.01799.x. PubMed DOI

Hoogman M, et al. Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. Lancet Psychiatry. 2017;4:310–319. doi: 10.1016/S2215-0366(17)30049-4. PubMed DOI PMC

Arnsten AFT, Li B-M. Neurobiology of Executive Functions: Catecholamine Influences on Prefrontal Cortical Functions. Biol. Psychiatry. 2005;57:1377–1384. doi: 10.1016/j.biopsych.2004.08.019. PubMed DOI

Gowrishankar R, Hahn MK, Blakely RD. Good riddance to dopamine: roles for the dopamine transporter in synaptic function and dopamine-associated brain disorders. Neurochem. Int. 2014;73:42–48. doi: 10.1016/j.neuint.2013.10.016. PubMed DOI

Nieoullon A. Dopamine and the regulation of cognition and attention. Prog. Neurobiol. 2002;67:53–83. doi: 10.1016/S0301-0082(02)00011-4. PubMed DOI

Ahmadi N, Mohammadi MR, Araghi SM, Zarafshan H. Neurocognitive Profile of Children with Attention Deficit Hyperactivity Disorders (ADHD): A comparison between subtypes. Iran. J. Psychiatry. 2014;9:197–202. PubMed PMC

Randall KD, Brocki KC, Kerns KA. Cognitive control in children with ADHD-C: how efficient are they? Child Neuropsychol. J. Norm. Abnorm. Dev. Child. Adolesc. 2009;15:163–178. PubMed

Bluschke, A., Chmielewski, W. X., Mückschel, M., Roessner, V. & Beste, C. Neuronal intra-individual variability masks response selection differences between ADHD subtypes - a need to change perspectives. Front. Hum. Neurosci. 11 (2017). PubMed PMC

Coull JT, Cheng R-K, Meck WH. Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2011;36:3–25. doi: 10.1038/npp.2010.113. PubMed DOI PMC

Doehnert, M., Brandeis, D., Schneider, G., Drechsler, R. & Steinhausen, H.-C. A neurophysiological marker of impaired preparation in an 11-year follow-up study of attention-deficit/hyperactivity disorder (ADHD). J. Child Psychol. Psychiatry, 10.1111/j.1469-7610.2012.02572.x (2012). PubMed

Hwang S-L, Gau SS-F, Hsu W-Y, Wu Y-Y. Deficits in interval timing measured by the dual-task paradigm among children and adolescents with attention-deficit/hyperactivity disorder. J. Child Psychol. Psychiatry. 2010;51:223–232. doi: 10.1111/j.1469-7610.2009.02163.x. PubMed DOI

Pretus, C. et al. Presence of Distractor Improves Time Estimation Performance in an Adult ADHD Sample. J. Atten. Disord. 10.1177/1087054716648776 (2016). PubMed

Smith A, et al. Neurofunctional effects of methylphenidate and atomoxetine in boys with attention-deficit/hyperactivity disorder during time discrimination. Biol. Psychiatry. 2013;74:615–622. doi: 10.1016/j.biopsych.2013.03.030. PubMed DOI

Smith A, Taylor E, Rogers JW, Newman S, Rubia K. Evidence for a pure time perception deficit in children with ADHD. J. Child Psychol. Psychiatry. 2002;43:529–542. doi: 10.1111/1469-7610.00043. PubMed DOI

Walg M, Oepen J, Prior H. Adjustment of Time Perception in the Range of Seconds and Milliseconds: The Nature of Time-Processing Alterations in Children With ADHD. J. Atten. Disord. 2015;19:755–763. doi: 10.1177/1087054712454570. PubMed DOI

Wilson TW, Heinrichs-Graham E, White ML, Knott NL, Wetzel MW. Estimating the passage of minutes: deviant oscillatory frontal activity in medicated and unmedicated ADHD. Neuropsychology. 2013;27:654–665. doi: 10.1037/a0034032. PubMed DOI PMC

Merchant H, de Lafuente V. Introduction to the neurobiology of interval timing. Adv. Exp. Med. Biol. 2014;829:1–13. doi: 10.1007/978-1-4939-1782-2_1. PubMed DOI

Petter EA, Lusk NA, Hesslow G, Meck WH. Interactive roles of the cerebellum and striatum in sub-second and supra-second timing: Support for an initiation, continuation, adjustment, and termination (ICAT) model of temporal processing. Neurosci. Biobehav. Rev. 2016;71:739–755. doi: 10.1016/j.neubiorev.2016.10.015. PubMed DOI

Walg, M., Hapfelmeier, G., El-Wahsch, D. & Prior, H. The faster internal clock in ADHD is related to lower processing speed: WISC-IV profile analyses and time estimation tasks facilitate the distinction between real ADHD and pseudo-ADHD. Eur. Child Adolesc. Psychiatry, 10.1007/s00787-017-0971-5 (2017). PubMed PMC

Buhusi CV, Meck WH. Relativity theory and time perception: single or multiple clocks? PloS One. 2009;4:e6268. doi: 10.1371/journal.pone.0006268. PubMed DOI PMC

Buhusi CV, Meck WH. What makes us tick? Functional and neural mechanisms of interval timing. Nat. Rev. Neurosci. 2005;6:755–765. doi: 10.1038/nrn1764. PubMed DOI

Lake JI, LaBar KS, Meck WH. Emotional modulation of interval timing and time perception. Neurosci. Biobehav. Rev. 2016;64:403–420. doi: 10.1016/j.neubiorev.2016.03.003. PubMed DOI PMC

Egeland J, Ueland T, Johansen S. Central Processing Energetic Factors Mediate Impaired Motor Control in ADHD Combined Subtype But Not in ADHD Inattentive Subtype. J. Learn. Disabil. 2012;45:361–370. doi: 10.1177/0022219411407922. PubMed DOI

Sergeant J. The cognitive-energetic model: an empirical approach to Attention-Deficit Hyperactivity Disorder. Neurosci. Biobehav. Rev. 2000;24:7–12. doi: 10.1016/S0149-7634(99)00060-3. PubMed DOI

Sergeant, J. A., Oosterlaan, J. & Meere, J. van der. Information Processing and Energetic Factors in Attention-Deficit/Hyperactivity Disorder. In Handbook of Disruptive Behavior Disorders 75–104, 10.1007/978-1-4615-4881-2_4 (Springer, Boston, MA, 1999).

van Rijn H, Kononowicz TW, Meck WH, Ng KK, Penney TB. Contingent negative variation and its relation to time estimation: a theoretical evaluation. Front. Integr. Neurosci. 2011;5:91. PubMed PMC

Nagai Y, et al. Brain activity relating to the contingent negative variation: an fMRI investigation. NeuroImage. 2004;21:1232–1241. doi: 10.1016/j.neuroimage.2003.10.036. PubMed DOI

Dahan A, Ryder CH, Reiner M. Components of motor deficiencies in ADHD and possible interventions. Neuroscience. 2016 PubMed

Georgiev D, Lange F, Seer C, Kopp B, Jahanshahi M. Movement-related potentials in Parkinson’s disease. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2016;127:2509–2519. doi: 10.1016/j.clinph.2016.04.004. PubMed DOI

van Rijn H, Gu B-M, Meck WH. Dedicated clock/timing-circuit theories of time perception and timed performance. Adv. Exp. Med. Biol. 2014;829:75–99. doi: 10.1007/978-1-4939-1782-2_5. PubMed DOI

Matell MS, Meck WH. Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Brain Res. Cogn. Brain Res. 2004;21:139–170. doi: 10.1016/j.cogbrainres.2004.06.012. PubMed DOI

Jocham G, Ullsperger M. Neuropharmacology of performance monitoring. Neurosci. Biobehav. Rev. 2009;33:48–60. doi: 10.1016/j.neubiorev.2008.08.011. PubMed DOI

Hauser TU, et al. The feedback-related negativity (FRN) revisited: new insights into the localization, meaning and network organization. NeuroImage. 2014;84:159–168. doi: 10.1016/j.neuroimage.2013.08.028. PubMed DOI

van Meel CS, Heslenfeld DJ, Oosterlaan J, Luman M. & Sergeant, J. A. ERPs associated with monitoring and evaluation of monetary reward and punishment in children with ADHD. J. Child Psychol. Psychiatry. 2011;52:942–953. doi: 10.1111/j.1469-7610.2010.02352.x. PubMed DOI

Döpfner, M., Görtz-Dorten, A. & Lehmkuhl, G. Diagnostik-System für Psychische Störungen im Kindes- und Jugendalter nach ICD-10 und DSM-IV, DISYPS-II. (Huber, 2008).

Wascher E, Beste C. Tuning perceptual competition. J. Neurophysiol. 2010;103:1057–1065. doi: 10.1152/jn.00376.2009. PubMed DOI

Beste C, Willemssen R, Saft C, Falkenstein M. Response inhibition subprocesses and dopaminergic pathways: basal ganglia disease effects. Neuropsychologia. 2010;48:366–373. doi: 10.1016/j.neuropsychologia.2009.09.023. PubMed DOI

Schneider D, Beste C, Wascher E. On the time course of bottom-up and top-down processes in selective visual attention: an EEG study. Psychophysiology. 2012;49:1492–1503. doi: 10.1111/j.1469-8986.2012.01462.x. PubMed DOI

Gohil K, Bluschke A, Roessner V, Stock A-K, Beste C. ADHD patients fail to maintain task goals in face of subliminally and consciously induced cognitive conflicts. Psychol. Med. 2017;47:1771–1783. doi: 10.1017/S0033291717000216. PubMed DOI

Zhang R, Stock A-K, Fischer R, Beste C. The system neurophysiological basis of backward inhibition. Brain Struct. Funct. 2016;221:4575–4587. doi: 10.1007/s00429-016-1186-0. PubMed DOI

Hasler R, et al. Attention-related EEG markers in adult ADHD. Neuropsychologia. 2016;87:120–133. doi: 10.1016/j.neuropsychologia.2016.05.008. PubMed DOI

Mayer K, Wyckoff SN, Strehl U. Underarousal in Adult ADHD: How Are Peripheral and Cortical Arousal Related? Clin. EEG Neurosci. 2015 PubMed

Wangler S, et al. Neurofeedback in children with ADHD: specific event-related potential findings of a randomized controlled trial. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2011;122:942–950. doi: 10.1016/j.clinph.2010.06.036. PubMed DOI

Bluschke A, Roessner V, Beste C. Editorial Perspective: How to optimise frequency band neurofeedback for ADHD. J. Child Psychol. Psychiatry. 2016;57:457–461. doi: 10.1111/jcpp.12521. PubMed DOI

Beste C, Saft C, Andrich J, Gold R, Falkenstein M. Stimulus-response compatibility in Huntington’s disease: a cognitive-neurophysiological analysis. J. Neurophysiol. 2008;99:1213–1223. doi: 10.1152/jn.01152.2007. PubMed DOI

Wild-Wall N, Willemssen R, Falkenstein M, Beste C. Time estimation in healthy ageing and neurodegenerative basal ganglia disorders. Neurosci. Lett. 2008;442:34–38. doi: 10.1016/j.neulet.2008.06.069. PubMed DOI

Nunez PL, Pilgreen KL. The spline-Laplacian in clinical neurophysiology: a method to improve EEG spatial resolution. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 1991;8:397–413. PubMed

Weismüller B, Bellebaum C. Expectancy affects the feedback-related negativity (FRN) for delayed feedback in probabilistic learning. Psychophysiology. 2016;53:1739–1750. doi: 10.1111/psyp.12738. PubMed DOI

Mückschel M, Stock A-K, Beste C. Psychophysiological mechanisms of interindividual differences in goal activation modes during action cascading. Cereb. Cortex N. Y. N. 2014;1991(24):2120–2129. doi: 10.1093/cercor/bht066. PubMed DOI

Pascual-Marqui RD. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 2002;24(Suppl D):5–12. PubMed

Sekihara K, Sahani M, Nagarajan SS. Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction. NeuroImage. 2005;25:1056–1067. doi: 10.1016/j.neuroimage.2004.11.051. PubMed DOI PMC

Fuchs M, Kastner J, Wagner M, Hawes S, Ebersole JS. A standardized boundary element method volume conductor model. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2002;113:702–712. doi: 10.1016/S1388-2457(02)00030-5. PubMed DOI

Mazziotta J, et al. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM) Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2001;356:1293–1322. doi: 10.1098/rstb.2001.0915. PubMed DOI PMC

Dippel G, Beste C. A causal role of the right inferior frontal cortex in implementing strategies for multi-component behaviour. Nat. Commun. 2015;6:6587. doi: 10.1038/ncomms7587. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...