Deciphering the regulation of P2X4 receptor channel gating by ivermectin using Markov models
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28708827
PubMed Central
PMC5533465
DOI
10.1371/journal.pcbi.1005643
PII: PCOMPBIOL-D-16-01853
Knihovny.cz E-zdroje
- MeSH
- adenosintrifosfát metabolismus MeSH
- algoritmy MeSH
- gating iontového kanálu účinky léků fyziologie MeSH
- HEK293 buňky MeSH
- ivermektin metabolismus MeSH
- lidé MeSH
- Markovovy řetězce MeSH
- metoda terčíkového zámku MeSH
- purinergní receptory P2X4 účinky léků metabolismus fyziologie MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenosintrifosfát MeSH
- ivermektin MeSH
- purinergní receptory P2X4 MeSH
The P2X4 receptor (P2X4R) is a member of a family of purinergic channels activated by extracellular ATP through three orthosteric binding sites and allosterically regulated by ivermectin (IVM), a broad-spectrum antiparasitic agent. Treatment with IVM increases the efficacy of ATP to activate P2X4R, slows both receptor desensitization during sustained ATP application and receptor deactivation after ATP washout, and makes the receptor pore permeable to NMDG+, a large organic cation. Previously, we developed a Markov model based on the presence of one IVM binding site, which described some effects of IVM on rat P2X4R. Here we present two novel models, both with three IVM binding sites. The simpler one-layer model can reproduce many of the observed time series of evoked currents, but does not capture well the short time scales of activation, desensitization, and deactivation. A more complex two-layer model can reproduce the transient changes in desensitization observed upon IVM application, the significant increase in ATP-induced current amplitudes at low IVM concentrations, and the modest increase in the unitary conductance. In addition, the two-layer model suggests that this receptor can exist in a deeply inactivated state, not responsive to ATP, and that its desensitization rate can be altered by each of the three IVM binding sites. In summary, this study provides a detailed analysis of P2X4R kinetics and elucidates the orthosteric and allosteric mechanisms regulating its channel gating.
Zobrazit více v PubMed
Barrera N.P., et al., Atomic force microscopy imaging demonstrates that P2X2 receptors are trimers but that P2X6 receptor subunits do not oligomerize. Journal of Biological Chemistry, 2005. 280(11): p. 10759–10765. doi: 10.1074/jbc.M412265200 PubMed DOI
Hattori M. and Gouaux E., Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature, 2012. 485(7397): p. 207–212. doi: 10.1038/nature11010 PubMed DOI PMC
Kawate T., et al., Crystal structure of the ATP-gated P2X4 ion channel in the closed state. Nature, 2009. 460(7255): p. 592–598. doi: 10.1038/nature08198 PubMed DOI PMC
Mio K., et al., Visualization of the trimeric P2X 2 receptor with a crown-capped extracellular domain. Biochemical and biophysical research communications, 2005. 337(3): p. 998–1005. doi: 10.1016/j.bbrc.2005.09.141 PubMed DOI
Nicke A., et al., P2X1 and P2X3 receptors form stable trimers: a novel structural motif of ligand-gated ion channels. The EMBO journal, 1998. 17(11): p. 3016–3028. doi: 10.1093/emboj/17.11.3016 PubMed DOI PMC
Kaczmarek-Hájek K., et al., Molecular and functional properties of P2X receptors—recent progress and persisting challenges. Purinergic Signalling, 2012. 8(3): p. 375–417. doi: 10.1007/s11302-012-9314-7 PubMed DOI PMC
Marquez-Klaka B., et al., Identification of an intersubunit cross-link between substituted cysteine residues located in the putative ATP binding site of the P2X1 receptor. The Journal of neuroscience, 2007. 27(6): p. 1456–1466. doi: 10.1523/JNEUROSCI.3105-06.2007 PubMed DOI PMC
Migita K., et al., Polar Residues of the Second Transmembrane Domain Influence Cation Permeability of the ATP-gated P2X2 Receptor. Journal of Biological Chemistry, 2001. 276: p. 30934–30941. doi: 10.1074/jbc.M103366200 PubMed DOI
Coddou C., et al., Activation and regulation of purinergic P2X receptor channels. Pharmacological reviews, 2011. 63(3): p. 641–683. doi: 10.1124/pr.110.003129 PubMed DOI PMC
Roberts J.A. and Evans R.J., ATP binding at human P2X1 receptors Contribution of aromatic and basic amino acids revealed using mutagenesis and partial agonists. Journal of Biological Chemistry, 2004. 279(10): p. 9043–9055. doi: 10.1074/jbc.M308964200 PubMed DOI
Egan T.M., Samways D.S.K., and Li Z., Biophysics of P2X receptors. Pflügers Archiv, 2006. 452(5): p. 501–512. doi: 10.1007/s00424-006-0078-1 PubMed DOI
Virginio C., et al., Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the rat P2X7 receptor. The Journal of physiology, 1999. 519(2): p. 335–346. PubMed PMC
Li M., et al., Physical basis of apparent pore dilation of ATP-activated P2X receptor channels. Nature neuroscience, 2015. PubMed PMC
Wei L., et al., ATP-induced P2X Receptor-Dependent Large Pore Formation: How Much Do We Know? Frontiers in Pharmacology, 2016. 7(5). PubMed PMC
Harkat M., et al., On the permeation of large organic cations through the pore of ATP-gated P2X receptors. Proceedings of the National Academy of Sciences, 2017. 114(19): p. E3786–E3795. PubMed PMC
Khakh B.S., et al., Allosteric control of gating and kinetics at P2X(4) receptor channels. J Neurosci, 1999. 19(17): p. 7289–99. PubMed PMC
Priel A. and Silberberg S.D., Mechanism of ivermectin facilitation of human P2X4 receptor channels. J Gen Physiol, 2004. 123(3): p. 281–93. doi: 10.1085/jgp.200308986 PubMed DOI PMC
Jelinkova I., et al., Identification of P2X(4) receptor-specific residues contributing to the ivermectin effects on channel deactivation. Biochem Biophys Res Commun, 2006. 349(2): p. 619–25. doi: 10.1016/j.bbrc.2006.08.084 PubMed DOI
Khadra A., et al., Gating properties of the P2X2a and P2X2b receptor channels: experiments and mathematical modeling. The Journal of general physiology, 2012. 139(5): p. 333–348. doi: 10.1085/jgp.201110716 PubMed DOI PMC
Zemkova H., et al., Allosteric regulation of the P2X4 receptor channel pore dilation. Pflügers Archiv-European Journal of Physiology, 2015. 467(4): p. 713–726. doi: 10.1007/s00424-014-1546-7 PubMed DOI PMC
Zemkova H., et al., Role of aromatic and charged ectodomain residues in the P2X4 receptor functions. Journal of Neurochemistry, 2007. 102(4): p. 1139–1150. doi: 10.1111/j.1471-4159.2007.04616.x PubMed DOI
Hibbs R.E. and Gouaux E., Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature, 2011. 474(7349): p. 54–60. doi: 10.1038/nature10139 PubMed DOI PMC
Silberberg S.D., Li M., and Swartz K.J., Ivermectin interaction with transmembrane helices reveals widespread rearrangements during opening of P2X receptor channels. Neuron, 2007. 54(2): p. 263–274. doi: 10.1016/j.neuron.2007.03.020 PubMed DOI
Yan Z., et al., Experimental characterization and mathematical modeling of P2X7 receptor channel gating. The Journal of Neuroscience, 2010. 30(42): p. 14213–14224. doi: 10.1523/JNEUROSCI.2390-10.2010 PubMed DOI PMC
Yan Z., et al., Calcium-dependent block of P2X7 receptor channel function is allosteric. The Journal of general physiology, 2011. 138(4): p. 437–452. doi: 10.1085/jgp.201110647 PubMed DOI PMC
Khadra A., et al., Dual gating mechanism and function of P2X7 receptor channels. Biophysical journal, 2013. 104(12): p. 2612–2621. doi: 10.1016/j.bpj.2013.05.006 PubMed DOI PMC
Yan Z., et al., The P2X(7) Receptor Channel Pore Dilates under Physiological Ion Conditions. The Journal of General Physiology, 2008. 132(5): p. 563–573. doi: 10.1085/jgp.200810059 PubMed DOI PMC
Browne L.E. and North R.A., P2X Receptor Intermediate Activation States Have Altered Nucleotide Selectivity. The Journal of Neuroscience, 2013. 33(37): p. 14801–14808. doi: 10.1523/JNEUROSCI.2022-13.2013 PubMed DOI PMC
Mackay L., et al., Deciphering the Kinetic and Gating Properties of Purinergic P2X7 Receptor Channels. Athens Journal of Natural & Formal Sciences, 2014. 1(1).
Vandenberg C. and Bezanilla F., A sodium channel gating model based on single channel, macroscopic ionic, and gating currents in the squid giant axon. Biophysical journal, 1991. 60(6): p. 1511 doi: 10.1016/S0006-3495(91)82186-5 PubMed DOI PMC
Toulmé E., et al., Functional properties of internalization-deficient P2X4 receptors reveal a novel mechanism of ligand-gated channel facilitation by ivermectin. Molecular pharmacology, 2006. 69(2): p. 576–587. doi: 10.1124/mol.105.018812 PubMed DOI
Habermacher C., et al., Photo-switchable tweezers illuminate pore-opening motions of an ATP-gated P2X ion channel. eLife, 2016. 5: p. e11050 doi: 10.7554/eLife.11050 PubMed DOI PMC
Miasojedow B., Moulines E., and Vihola M., An adaptive parallel tempering algorithm. Journal of Computational and Graphical Statistics, 2013. 22(3): p. 649–664.
Siekmann I., Sneyd J., and Crampin E.J., MCMC can detect nonidentifiable models. Biophysical journal, 2012. 103(11): p. 2275–2286. doi: 10.1016/j.bpj.2012.10.024 PubMed DOI PMC
Christen J.A. and Fox C., A general purpose sampling algorithm for continuous distributions (the t-walk). Bayesian Analysis, 2010. 5(2): p. 263–281.
Gregory P., Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with Mathematica®Support. 2005: Cambridge University Press.