Deciphering the regulation of P2X4 receptor channel gating by ivermectin using Markov models

. 2017 Jul ; 13 (7) : e1005643. [epub] 20170714

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28708827
Odkazy

PubMed 28708827
PubMed Central PMC5533465
DOI 10.1371/journal.pcbi.1005643
PII: PCOMPBIOL-D-16-01853
Knihovny.cz E-zdroje

The P2X4 receptor (P2X4R) is a member of a family of purinergic channels activated by extracellular ATP through three orthosteric binding sites and allosterically regulated by ivermectin (IVM), a broad-spectrum antiparasitic agent. Treatment with IVM increases the efficacy of ATP to activate P2X4R, slows both receptor desensitization during sustained ATP application and receptor deactivation after ATP washout, and makes the receptor pore permeable to NMDG+, a large organic cation. Previously, we developed a Markov model based on the presence of one IVM binding site, which described some effects of IVM on rat P2X4R. Here we present two novel models, both with three IVM binding sites. The simpler one-layer model can reproduce many of the observed time series of evoked currents, but does not capture well the short time scales of activation, desensitization, and deactivation. A more complex two-layer model can reproduce the transient changes in desensitization observed upon IVM application, the significant increase in ATP-induced current amplitudes at low IVM concentrations, and the modest increase in the unitary conductance. In addition, the two-layer model suggests that this receptor can exist in a deeply inactivated state, not responsive to ATP, and that its desensitization rate can be altered by each of the three IVM binding sites. In summary, this study provides a detailed analysis of P2X4R kinetics and elucidates the orthosteric and allosteric mechanisms regulating its channel gating.

Zobrazit více v PubMed

Barrera N.P., et al., Atomic force microscopy imaging demonstrates that P2X2 receptors are trimers but that P2X6 receptor subunits do not oligomerize. Journal of Biological Chemistry, 2005. 280(11): p. 10759–10765. doi: 10.1074/jbc.M412265200 PubMed DOI

Hattori M. and Gouaux E., Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature, 2012. 485(7397): p. 207–212. doi: 10.1038/nature11010 PubMed DOI PMC

Kawate T., et al., Crystal structure of the ATP-gated P2X4 ion channel in the closed state. Nature, 2009. 460(7255): p. 592–598. doi: 10.1038/nature08198 PubMed DOI PMC

Mio K., et al., Visualization of the trimeric P2X 2 receptor with a crown-capped extracellular domain. Biochemical and biophysical research communications, 2005. 337(3): p. 998–1005. doi: 10.1016/j.bbrc.2005.09.141 PubMed DOI

Nicke A., et al., P2X1 and P2X3 receptors form stable trimers: a novel structural motif of ligand-gated ion channels. The EMBO journal, 1998. 17(11): p. 3016–3028. doi: 10.1093/emboj/17.11.3016 PubMed DOI PMC

Kaczmarek-Hájek K., et al., Molecular and functional properties of P2X receptors—recent progress and persisting challenges. Purinergic Signalling, 2012. 8(3): p. 375–417. doi: 10.1007/s11302-012-9314-7 PubMed DOI PMC

Marquez-Klaka B., et al., Identification of an intersubunit cross-link between substituted cysteine residues located in the putative ATP binding site of the P2X1 receptor. The Journal of neuroscience, 2007. 27(6): p. 1456–1466. doi: 10.1523/JNEUROSCI.3105-06.2007 PubMed DOI PMC

Migita K., et al., Polar Residues of the Second Transmembrane Domain Influence Cation Permeability of the ATP-gated P2X2 Receptor. Journal of Biological Chemistry, 2001. 276: p. 30934–30941. doi: 10.1074/jbc.M103366200 PubMed DOI

Coddou C., et al., Activation and regulation of purinergic P2X receptor channels. Pharmacological reviews, 2011. 63(3): p. 641–683. doi: 10.1124/pr.110.003129 PubMed DOI PMC

Roberts J.A. and Evans R.J., ATP binding at human P2X1 receptors Contribution of aromatic and basic amino acids revealed using mutagenesis and partial agonists. Journal of Biological Chemistry, 2004. 279(10): p. 9043–9055. doi: 10.1074/jbc.M308964200 PubMed DOI

Egan T.M., Samways D.S.K., and Li Z., Biophysics of P2X receptors. Pflügers Archiv, 2006. 452(5): p. 501–512. doi: 10.1007/s00424-006-0078-1 PubMed DOI

Virginio C., et al., Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the rat P2X7 receptor. The Journal of physiology, 1999. 519(2): p. 335–346. PubMed PMC

Li M., et al., Physical basis of apparent pore dilation of ATP-activated P2X receptor channels. Nature neuroscience, 2015. PubMed PMC

Wei L., et al., ATP-induced P2X Receptor-Dependent Large Pore Formation: How Much Do We Know? Frontiers in Pharmacology, 2016. 7(5). PubMed PMC

Harkat M., et al., On the permeation of large organic cations through the pore of ATP-gated P2X receptors. Proceedings of the National Academy of Sciences, 2017. 114(19): p. E3786–E3795. PubMed PMC

Khakh B.S., et al., Allosteric control of gating and kinetics at P2X(4) receptor channels. J Neurosci, 1999. 19(17): p. 7289–99. PubMed PMC

Priel A. and Silberberg S.D., Mechanism of ivermectin facilitation of human P2X4 receptor channels. J Gen Physiol, 2004. 123(3): p. 281–93. doi: 10.1085/jgp.200308986 PubMed DOI PMC

Jelinkova I., et al., Identification of P2X(4) receptor-specific residues contributing to the ivermectin effects on channel deactivation. Biochem Biophys Res Commun, 2006. 349(2): p. 619–25. doi: 10.1016/j.bbrc.2006.08.084 PubMed DOI

Khadra A., et al., Gating properties of the P2X2a and P2X2b receptor channels: experiments and mathematical modeling. The Journal of general physiology, 2012. 139(5): p. 333–348. doi: 10.1085/jgp.201110716 PubMed DOI PMC

Zemkova H., et al., Allosteric regulation of the P2X4 receptor channel pore dilation. Pflügers Archiv-European Journal of Physiology, 2015. 467(4): p. 713–726. doi: 10.1007/s00424-014-1546-7 PubMed DOI PMC

Zemkova H., et al., Role of aromatic and charged ectodomain residues in the P2X4 receptor functions. Journal of Neurochemistry, 2007. 102(4): p. 1139–1150. doi: 10.1111/j.1471-4159.2007.04616.x PubMed DOI

Hibbs R.E. and Gouaux E., Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature, 2011. 474(7349): p. 54–60. doi: 10.1038/nature10139 PubMed DOI PMC

Silberberg S.D., Li M., and Swartz K.J., Ivermectin interaction with transmembrane helices reveals widespread rearrangements during opening of P2X receptor channels. Neuron, 2007. 54(2): p. 263–274. doi: 10.1016/j.neuron.2007.03.020 PubMed DOI

Yan Z., et al., Experimental characterization and mathematical modeling of P2X7 receptor channel gating. The Journal of Neuroscience, 2010. 30(42): p. 14213–14224. doi: 10.1523/JNEUROSCI.2390-10.2010 PubMed DOI PMC

Yan Z., et al., Calcium-dependent block of P2X7 receptor channel function is allosteric. The Journal of general physiology, 2011. 138(4): p. 437–452. doi: 10.1085/jgp.201110647 PubMed DOI PMC

Khadra A., et al., Dual gating mechanism and function of P2X7 receptor channels. Biophysical journal, 2013. 104(12): p. 2612–2621. doi: 10.1016/j.bpj.2013.05.006 PubMed DOI PMC

Yan Z., et al., The P2X(7) Receptor Channel Pore Dilates under Physiological Ion Conditions. The Journal of General Physiology, 2008. 132(5): p. 563–573. doi: 10.1085/jgp.200810059 PubMed DOI PMC

Browne L.E. and North R.A., P2X Receptor Intermediate Activation States Have Altered Nucleotide Selectivity. The Journal of Neuroscience, 2013. 33(37): p. 14801–14808. doi: 10.1523/JNEUROSCI.2022-13.2013 PubMed DOI PMC

Mackay L., et al., Deciphering the Kinetic and Gating Properties of Purinergic P2X7 Receptor Channels. Athens Journal of Natural & Formal Sciences, 2014. 1(1).

Vandenberg C. and Bezanilla F., A sodium channel gating model based on single channel, macroscopic ionic, and gating currents in the squid giant axon. Biophysical journal, 1991. 60(6): p. 1511 doi: 10.1016/S0006-3495(91)82186-5 PubMed DOI PMC

Toulmé E., et al., Functional properties of internalization-deficient P2X4 receptors reveal a novel mechanism of ligand-gated channel facilitation by ivermectin. Molecular pharmacology, 2006. 69(2): p. 576–587. doi: 10.1124/mol.105.018812 PubMed DOI

Habermacher C., et al., Photo-switchable tweezers illuminate pore-opening motions of an ATP-gated P2X ion channel. eLife, 2016. 5: p. e11050 doi: 10.7554/eLife.11050 PubMed DOI PMC

Miasojedow B., Moulines E., and Vihola M., An adaptive parallel tempering algorithm. Journal of Computational and Graphical Statistics, 2013. 22(3): p. 649–664.

Siekmann I., Sneyd J., and Crampin E.J., MCMC can detect nonidentifiable models. Biophysical journal, 2012. 103(11): p. 2275–2286. doi: 10.1016/j.bpj.2012.10.024 PubMed DOI PMC

Christen J.A. and Fox C., A general purpose sampling algorithm for continuous distributions (the t-walk). Bayesian Analysis, 2010. 5(2): p. 263–281.

Gregory P., Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with Mathematica®Support. 2005: Cambridge University Press.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace