Focus on Chemistry of the 10-Dioxane-nido-7,8-dicarba-undecahydrido Undecaborate Zwitterion; Exceptionally Easy Abstraction of Hydrogen Bridge and Double-Action Pathways Observed in Ring Cleavage Reactions with OH- as Nucleophile
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-27648S
Grantová Agentura České Republiky
PPLZ L200321851
Akademie Věd České Republiky
PubMed
32069968
PubMed Central
PMC7070711
DOI
10.3390/molecules25040814
PII: molecules25040814
Knihovny.cz E-zdroje
- Klíčová slova
- borane, carborane, dicarbollide ion, nucleophilic substitution, oxonium atom,
- MeSH
- bor chemie MeSH
- borany chemie MeSH
- dioxany chemie MeSH
- dusík chemie MeSH
- halogeny chemie MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 1,4-dioxane MeSH Prohlížeč
- bor MeSH
- borany MeSH
- dioxany MeSH
- dusík MeSH
- halogeny MeSH
Ring cleavage of cyclic ether substituents attached to a boron cage via an oxonium oxygen atom are amongst the most versatile methods for conjoining boron closo-cages with organic functional groups. Here we focus on much less tackled chemistry of the 11-vertex zwitterionic compound [10-(O-(CH2-CH2)2O)-nido-7,8-C2B9H11] (1), which is the only known representative of cyclic ether substitution at nido-cages, and explore the scope for the use of this zwitterion 1 in reactions with various types of nucleophiles including bifunctional ones. Most of the nitrogen, oxygen, halogen, and sulphur nucleophiles studied react via nucleophilic substitution at the C1 atom of the dioxane ring, followed by its cleavage that produces six atom chain between the cage and the respective organic moiety. We also report the differences in reactivity of this nido-cage system with the simplest oxygen nucleophile, i.e., OH-. With compound 1, reaction proceeds in two possible directions, either via typical ring cleavage, or by replacement of the whole dioxane ring with -OH at higher temperatures. Furthermore, an easy deprotonation of the hydrogen bridge in 1 was observed that proceeds even in diluted aqueous KOH. We believe this knowledge can be further applied in the design of functional molecules, materials, and drugs.
Zobrazit více v PubMed
Hawthorne M.F., Young D.C., Garrett P.M., Owen D.A., Schwerin S.G., Tebbe F.N., Wegner P.A. Preparation and characterization of (3)-1,2- and (3)-1,7-dicarbadodecahydroundecaborate(-1) Ions. J. Am. Chem. Soc. 1968;90:862–865. doi: 10.1021/ja01006a006. DOI
Plešek J., Heřmánek S., Štíbr B. Potassium Dodecahydro-7,8-Dicarba-Nido-Undecaborate(1-), K[7,8-C2B9H12], Intermediates, Stock Solution, and Anhydrous Salt. Inorg. Synth. 1983;22:231–234.
Grimes R.N. Carboranes. 3rd ed. Academic Press Ltd-Elsevier Science Ltd.; London, UK: 2016. Eleven-Vertex Carboranes; pp. 179–247.
Frank R., Adhikari A.K., Auer H., Hey-Hawkins E. Electrophile-Induced Nucleophilic Substitution of the nido-Dicarbaundecaborate Anion nido-7,8-C2B9H12-by Conjugated Heterodienes. Chem. Eur. J. 2014;20:1440–1446. doi: 10.1002/chem.201303762. PubMed DOI
Young D.C., Howe D.V., Hawthorne M.F. Ligand derivatives of (3)-1, 2-dicarbadodecahydroundecaborate (-1) J. Am Chem. Soc. 1969;91:859–862. doi: 10.1021/ja01032a011. DOI
Zakharkin L.I., Kalinin V.N., Zhigareva G.G. Oxidation of dicarbadodecahydroundecaborate anions by mercuric-chloride in tetrahydrofuran and pyridine. Bull. Acad. Sci. USSR. 1979;28:2198–2199. doi: 10.1007/BF00947583. DOI
Stogniy M.Y., Abramova E.N., Lobanova I.A., Sivaev I.B., Bragin V.I., Petrovskii P.V., Tsupreva V.N., Sorokina O.V., Bregadze V.I. Synthesis of functional derivatives of 7,8-dicarba-nido-undecaborate anion by ring-opening of its cyclic oxonium derivatives. Collect. Czech. Chem. Commun. 2007;72:1676–1688. doi: 10.1135/cccc20071676. DOI
Řezáčová P., Řezáčová P., Pokorná J., Brynda J., Kožíšek M., Cígler P., Lepšík M., Fanfrlík J., Řezáč J., Šašková K.G., et al. From nonpeptide toward noncarbon protease inhibitors: Metallacarboranes as specific and potent inhibitors of HIV protease. J. Med. Chem. 2009;52:7132–7141. PubMed
Semioshkin A.A., Sivaev I.B., Bregadze V.I. Cyclic oxonium derivatives of polyhedral boron hydrides and their synthetic applications. Dalton Trans. 2008:977–992. doi: 10.1039/b715363e. PubMed DOI
Sivaev I.B., Kulikova N.Y., Nizhnik E.A., Vichuzhanin M.V., Starikova Z.A., Semioshkin A.A., Bregadze V.I. Practical synthesis of 1,4-dioxane derivative of the closo-dodecaborate anion and its ring opening with acetylenic alkoxides. J. Organomet. Chem. 2008;693:519–525. doi: 10.1016/j.jorganchem.2007.11.027. DOI
Sivaev I.B., Bregadze V.I. Cyclic Oxonium Derivatives as an Efficient Synthetic Tool for the Modification of Polyhedral Boron Hydrides. In: Hosmane N.S., editor. Boron Science: New Technologies and Applications. CRC Press-Taylor & Francis Group; Boca Raton, FL, USA: 2012. pp. 623–637.
Grimes R.N. Carboranes. 3rd ed. Academic Press, Elsevier; London, UK: 2016. pp. 1–1041.
Dash B.P., Satapathy R., Swain B.R., Mahanta C.S., Jena B.B., Hosmane N.S. Cobalt bis(dicarbollide) anion and its derivatives. J. Organomet. Chem. 2017;849:170–194. doi: 10.1016/j.jorganchem.2017.04.006. DOI
Plešek J., Heřmánek S., Franken A., Císařová I., Nachtigal C. Dimethyl sulfate induced nucleophilic substitution of the bis(1,2-dicarbollido)-3-cobalt(1-) ate ion. Syntheses, properties and structures of its 8,8′-mu-sulfato, 8-phenyl and 8-dioxane derivatives. Collect. Czech. Chem. Commun. 1997;62:47–56. doi: 10.1135/cccc19970047. DOI
Matveev E.Y., Akimov S.S., Kubasov A.S., Nichugovskii A.I., Nartov A.S., Retivov V.M., Zhizhina K.Y., Kuznetsov N.T. Reaction of the B10H9O2C4H8 (-) anion with C-nucleophiles. Russ. J. Inorg. Chem. 2017;62:808–813. doi: 10.1134/S0036023617060146. DOI
El Anwar S., Laila Z., Ramsubhag R., Tlais S., Safa A., Dudley G., Naoufal D. Synthesis and characterization of click-decahydrodecaborate derivatives by the copper(I) catalyzed 3+2 azide-alkyne cycloaddition reaction. J. Organomet. Chem. 2018;865:89–94. doi: 10.1016/j.jorganchem.2018.01.039. DOI
Sivaev I.B., Semioshkin A.A., Brellochs B., Sjoberg S., Bregadze V.I. Synthesis of oxonium derivatives of the dodecahydro-closo-dodecaborate anion B12H12 (2-). Tetramethylene oxonium derivative of B12H12 (2-) as a convenient precursor for the synthesis of functional compounds for boron neutron capture therapy. Polyhedron. 2000;19:627–632. doi: 10.1016/S0277-5387(00)00293-X. DOI
Bernard R., Cornu D., Gruner B., Dozol J.F., Miele P., Bonnetot B. Synthesis of B12H12 (2-) based extractants and their application for the treatment of nuclear wastes. J. Organomet. Chem. 2002;657:83–90. doi: 10.1016/S0022-328X(02)01540-1. DOI
Bernard R., Cornu D., Perrin M., Scharff J.P., Miele P. Synthesis and X-ray structural characterisation of the tetramethylene oxonium derivative of the hydrodecaborate anion. A versatile route for derivative chemistry of B10H10 (2-) J. Organomet. Chem. 2004;689:2581–2585. doi: 10.1016/j.jorganchem.2004.05.014. DOI
Grűner B., Císařová I., Čáslavský J., Bonnetot B., Cornu D. Synthesis of 12-hydroxy and 12-dioxane derivatives of the closo-1-carbadodecaborate(1-) ion. Variations on the Plesek’s cobalt bis(dicarbollide) pattern. Collect. Czech. Chem. Commun. 2002;67:953–964. doi: 10.1135/cccc20020953. DOI
Oleshkevich E., Teixidor F., Rosell A., Vinas C. Merging Icosahedral Boron Clusters and Magnetic Nanoparticles: Aiming toward Multifunctional Nanohybrid Materials. Inorg. Chem. 2018;57:462–470. doi: 10.1021/acs.inorgchem.7b02691. PubMed DOI
Dash B.P., Satapathy R., Maguire J.A., Hosmane N.S. Polyhedral boron clusters in materials science. N. J. Chem. 2011;35:1955–1972. doi: 10.1039/c1nj20228f. DOI
Llop J., Masalles C., Viñas C., Teixidor F., Sillanpää R., Kivekäs R. The 3,3′-Co(1,2-C2B9H11)(2) (-) anion as a platform for new materials: Synthesis of its functionalized monosubstituted derivatives incorporating synthons for conducting organic polymers. Dalton Trans. 2003:556–561. doi: 10.1039/b211860m. DOI
Nuñez R., Romero I., Teixidor F., Viñas C. Icosahedral boron clusters: A perfect tool for the enhancement of polymer features. Chem. Soc. Rev. 2016;45:5147–5173. doi: 10.1039/C6CS00159A. PubMed DOI
Rais J., Grűner B. Extraction with Metal bis(Dicarbollide) Anions; Metal bis(Dicarbollide) Extractants and their Applications in Separation Chemistry. In: Marcus Y., SenGupta A.K., editors. Ion Exchange, Solvent Extraction. 1st ed. Volume 17. Marcel Dekker; New York, NY, USA: 2004. pp. 243–334.
Grűner B., Rais J., Selucký P., Lučaníkova M. Recent Progress in Extraction Agents Based on Cobalt Bis(Dicarbollides) for Partitioning of Radionuclides from High-Level Nuclear Waste. In: Hosmane N.S., editor. Boron Science: New Technologies and Applications. Crc Press-Taylor & Francis Group; Boca Raton, FL, USA: 2012. pp. 463–490.
Hao E., Vicente M.G.H. Expeditious synthesis of porphyrin-cobaltacarborane conjugates. Chem. Commun. 2005:1306–1308. doi: 10.1039/B415649H. PubMed DOI
Hao E.H., Jensen T.J., Courtney B.H., Vicente M.G.H. Synthesis and cellular studies of porphyrin-cobaltacarborane conjugates. Bioconjugate Chem. 2005;16:1495–1502. doi: 10.1021/bc0502098. PubMed DOI
Olejniczak A.B., Plešek J., Kříž O., Lesnikowski Z.J. A nucleoside conjugate containing a metallacarborane group and its incorporation into a DNA oligonucleotide. Angew. Chem. Int. Edit. 2003;42:5740–5743. doi: 10.1002/anie.200352505. PubMed DOI
Lesnikowski Z.J. Challenges and Opportunities for the Application of Boron Clusters in Drug Design. J. Med. Chem. 2016;59:7738–7758. doi: 10.1021/acs.jmedchem.5b01932. PubMed DOI
Gabel D. Boron clusters in medicinal chemistry: Perspectives and problems. Pure Appl. Chem. 2015;87:173–179. doi: 10.1515/pac-2014-1007. DOI
Semioshkin A., Bregadze V.I., Godovikov I., Ilinova A., Laskova Z.J., Starikova Z.A. Synthesis and structure of 1-iodo-7-dioxonium-decahydro-closo-dodecaborate. J. Organomet. Chem. 2011;696:2760–3765. doi: 10.1016/j.jorganchem.2011.04.037. DOI
Schaffran T., Lissel F., Samatanga B., Karlsson G., Burghardt A., Edwards K., Winterhalter M., Peschka-Suss R., Schubert R., Gabel D. Dodecaborate cluster lipids with variable headgroups for boron neutron capture therapy: Synthesis, physical-chemical properties and toxicity. J. Organomet. Chem. 2009;694:1708–1712. doi: 10.1016/j.jorganchem.2008.12.044. DOI
Cígler P., Kožíšek M., Rezáčova P., Brynda J., Otwinowski Z., Pokorná J., Plešek J., Grűner B., Dolečková-Marešová L., Máša M., et al. From nonpeptide toward noncarbon protease inhibitors: Metallacarboranes as specific and potent inhibitors of HIV protease. Proc. Natl. Acad. Sci. USA. 2005;102:15394–15399. doi: 10.1073/pnas.0507577102. PubMed DOI PMC
Sivaev I.B., Bregadze V.V. Polyhedral Boranes for Medical Applications: Current Status and Perspectives. Eur. J. Inorg. Chem. 2009:1433–1450. doi: 10.1002/ejic.200900003. DOI
Řezáčová P., Cigler P., Matějíček P., Lepšík M., Pokorná J., Grűner B., Konvalinka J. Medicinal Application of Carboranes Inhibition of HIV Protease. In: Hosmane N.S., editor. Boron Science: New Technologies and Applications. CRC Press-Taylor & Francis Group; Boca Raton, FL, USA: 2012. pp. 41–70.
Prikaznov A.V., Las’kova Y.N., Semioshkin A.A., Sivaev I.B., Kisin A.V., Bregadze V.I. Synthesis of boron-containing tyrosine derivatives based on the closo-decaborate and closo-dodecaborate anions. Russ. Chem. Bull. 2011;60:2550–2554. doi: 10.1007/s11172-011-0392-4. DOI
Neumann W., Xu S., Sarosi M.B., Scholz M.S., Crews B.C., Ghebreselasie K., Banerjee S., Marnett L.J., Hey-Hawkins E. nido-Dicarbaborate Induces Potent and Selective Inhibition of Cyclooxygenase-2. ChemMedChem. 2016;11:175–178. doi: 10.1002/cmdc.201500199. PubMed DOI PMC
Dabrowska A., Matuszewski M., Zwolinski K., Ignaczak A., Olejniczak A.B. Insight into lipophilicity of deoxyribonucleoside-boron cluster conjugates. Eur. J. Pharm. Sci. 2018;111:226–237. doi: 10.1016/j.ejps.2017.09.036. PubMed DOI
Brynda J., Mader P., Šícha V., Fábry M., Poncová K., Bakardiev M., Grűner B., Cígler P., Řezáčová P. Carborane-Based Carbonic Anhydrase Inhibitors. Angew. Chem.-Int. Edit. 2013;52:13760–13763. doi: 10.1002/anie.201307583. PubMed DOI
Kang H.C., Lee S.S., Knobler C.B., Hawthorne M.F. Synthesis of Charge-compensated Dicarbollide Ligand Precursors and their Use in the Preparation of Novel Metallacarboranes. Inorg. Chem. 1991;30:2024–2031. doi: 10.1021/ic00009a015. DOI
Timofeev S.V., Sivaev I.B., Prikaznova E.A., Bregadze V.I. Transition metal complexes with charge-compensated dicarbollide ligands. J. Organomet. Chem. 2014;751:221–250. doi: 10.1016/j.jorganchem.2013.08.012. DOI
Tarres M., Viñas C., Gonzalez-Cardoso P., Hanninen M.M., Sillanpää R., Dorďovic V., Uchman M., Teixidor F., Matějíček P. Aqueous Self-Assembly and Cation Selectivity of Cobaltabisdicarbollide Dianionic Dumbbells. Chem. Eur. J. 2014;20:6786–6794. doi: 10.1002/chem.201402193. PubMed DOI
Stogniy M.Y., Kazakov G.S., Sivaev I.B., Bregadze V.I. Synthesis of podands with nido-carboranyl groups as a basis for construction of crown ethers with an incorporated metallacarborane moiety. Russ. Chem. Bull. 2013;62:699–704. doi: 10.1007/s11172-013-0095-0. DOI
Kazakov G.S., Stogniy M.Y., Sivaev I.B., Suponitsky K.Y., Godovikov I.A., Kirilin A.D., Bregadze V.I. Synthesis of crown ethers with the incorporated cobalt bis(dicarbollide) fragment. J. Organomet. Chem. 2015;798:196–203. doi: 10.1016/j.jorganchem.2015.05.012. DOI
Nekvinda J., Rozycka D., Rykowski S., Wyszko E., Fedoruk-Wyszomirska A., Gurda D., Orlicka-Plocka M., Giel-Pietraszuk M., Kiliszek A., Rypniewski W., et al. Synthesis of naphthalimide-carborane and metallacarborane conjugates: Anticancer activity, DNA binding ability. Bioorgan. Chem. 2020;94:16. doi: 10.1016/j.bioorg.2019.103432. PubMed DOI
Grűner B., Brynda J., Das V., Šícha V., Štěpánková J., Nekvinda J., Holub J., Pospíšilová K., Fabry M., Pachl P., et al. Metallacarborane Sulfamides: Unconventional, Specific, and Highly Selective Inhibitors of Carbonic Anhydrase IX. J. Med. Chem. 2019;62:9560–9575. doi: 10.1021/acs.jmedchem.9b00945. PubMed DOI
El Anwar S., Assaf K.I., Begaj B., Samsonov M.A., Růžičková Z., Holub J., Bavol D., Nau W.M., Gabel D., Grűner B. Versatile, one-pot introduction of nonahalogenated 2-ammonio-decaborate ions as boron cluster scaffolds into organic molecules; host-guest complexation with gamma-cyclodextrin. Chem. Commun. 2019;55:13669–13672. doi: 10.1039/C9CC07678F. PubMed DOI
Peymann T., Kuck K., Gabel D. Ring opening of tetrahydropyran attached to undecahydro-closo-dodecaborate(1-) by nucleophiles. Inorg. Chem. 1997;36:5138–5139. doi: 10.1021/ic970647t. DOI
Sivaev I.B., Starikova Z.A., Sjoberg S., Bregadze V.I. Synthesis of functional derivatives of the 3,3′-Co(1,2-C2B2H11)(2) (-) anion. J. Organomet. Chem. 2002;649:1–8. doi: 10.1016/S0022-328X(01)01352-3. DOI
Haynes W.M. CRC Handbook of Chemistry and Physics. 97th ed. CRC Press-Taylor & Francis Group; Boca Raton, FL, USA: 2016. pp. 5–89.
Heřmánek S. NMR as a tool for elucidation of structures and estimation of electron distribution in boranes and their derivatives. Inorg. Chim. Acta. 1999;289:20–44. doi: 10.1016/S0020-1693(99)00055-9. DOI
Heřmánek S. B-11 NMR-spectra of boranes, main-group heteroboranes, and substituted derivatives–Factors influencing chemical-shifts of skeletal atoms. Chem. Rev. 1992;92:325–362.
Grimes R.N. Carboranes. 3rd ed. Academic Press, Elsevier; London, UK: 2016. Metallacarboranes of the Transition and Lanthanide Elements; pp. 711–903.
Holub J., Grűner B., Perekalin D.S., Golovanov D.G., Lyssenko K.A., Petrovskii P.V., Kudinov A.R., Štíbr B. Synthesis and rearrangements of aminosubstituted ferra- and ruthenatricarbaboranes. Inorg. Chem. 2005;44:1655–1659. doi: 10.1021/ic0483702. PubMed DOI
Grűner B., Bačkovský J., Sillanpää R., Kivekäs R., Císařová I., Teixidor F., Viñas C., Štíbr B. Amino-substituted ferra-bis(tricarbollides)—Metallatricarbaboranes designed for linear molecular constructions. Eur. J. Inorg. Chem. 2004:1402–1410. doi: 10.1002/ejic.200300686. DOI
Grűner B., Lehtonen A., Kivekäs R., Sillanpää R., Holub J., Teixidor F., Viñas C., Štíbr B. Unusual 9 -> 10 rearrangement of the substituted cage carbon in the ferratricarbollide series. Synthesis of the isomeric complexes 2-eta(5)-(C5H5)-10-X-closo-2,1,7,10-FeC3B8H10 (where X = H2N, MeHN, Me2N, and Bu(t)HN) Inorg. Chem. 2000;39:2577–2580. doi: 10.1021/ic991375s. PubMed DOI
Bakardjiev M., Holub J., Hnyk D., Císařová I., Londesborough M.G.S., Perekalin D.S., Štíbr B. Structural dualism in the zwitterionic 7-RR′ NH-nido-7,8,9-C3B8H10 tricarbollide series: An example of absolute tautomerism. Angew. Chem. Int. Edit. 2005;44:6222–6226. doi: 10.1002/anie.200501018. PubMed DOI
Štíbr B. On Tautomerism. The Story of Absolute Tautomerism, an Unique Phenomenon in Chemistry. Chem. Listy. 2008;102:902–905.
Frank R., Auer H., Hey-Hawkins E. Functionalisation of the nido-dicarbaborate anion nido-7,8-C2B9H12- by hydride abstraction. J. Organomet. Chem. 2013;747:217–224. doi: 10.1016/j.jorganchem.2013.04.031. DOI
Plešek J., Grüner B., Heřmánek S., Báča J., Mareček V., Janchenová J., Lhotský A., Holub K., Selucký P., Rais J., et al. Synthesis of functionalized cobaltacarboranes based on the closo-(1,2-C2B9H11)(2)-3,3′-Co (-) ion bearing polydentate ligands for separation of M3+ cations from nuclear waste solutions. Electrochemical and liquid-liquid extraction study of selective transfer of M3+ metal cations to an organic phase. Molecular structure of the closo- (8-(2-CH3O-C5H4-O)- (CH2CH2O)(2)-1,2-C2B9H10)-(1’,2’-C2B9H11)-3,3′-Co Na determined by X-ray diffraction analysis. Polyhedron. 2002;21:975–986.
Plešek J., Grűner B., Macháček J., Císařová I., Čáslavský J. 8-Dioxane ferra(III) bis(dicarbollide): A paramagnetic functional molecule as versatile building block for introduction of a Fe(III) centre into organic molecules. J. Organomet. Chem. 2007;692:4801–4804. doi: 10.1016/j.jorganchem.2007.07.026. DOI
Grűner B., Mikulášek L., Báča J., Císařová I., Böhmer V., Danila C., Reinoso-Garcia M.M., Verboom W., Reinhoudt D.N., Casnati A., et al. Cobalt bis(dicarbollides)(1-) covalently attached to the calix 4 arene platform: The first combination of organic bowl-shaped matrices and inorganic metallaborane cluster anions. Eur. J. Org. Chem. 2005:2022–2039. doi: 10.1002/ejoc.200400811. DOI
Farras P., Teixidor F., Sillanpää R., Viñas C. A convenient synthetic route to useful monobranched polyethoxylated halogen terminated 3,3-Co(1,2-C2B9H11)(2) (-) synthons. Dalton Trans. 2010;39:1716–1718. doi: 10.1039/B924798J. PubMed DOI
Hosmane N.S., Maguire J.A., Zhu Y., Takagaki M. Boron and Gadolinium Neutron Capture Therapy for Cancer Treatment. 1st ed. World Scientific Co., Pte, Ltd.; Hackensack, NJ, USA: 2012.
Šubrtová V., Petříček V., Hummel L. Structure of the zwitterionic 10- 2-(2-Dimethylsulfonioethoxy undecahydro-7,8-dicarba-nido-uncecaborate)(1-) Acta Crystallogr. C. 1989;45:1964–1966. doi: 10.1107/S0108270189004555. DOI
Shmal’ko A.V., Anufriev S.A., Anisimov A.A., Stogniy M.Y., Sivaev I.B., Bregadze V.I. Synthesis of cobalt and nickel 6,6-diphenylbis(dicarbollides) Russ. Chem. Bull. 2019;68:1239–1247. doi: 10.1007/s11172-019-2547-7. DOI
Grűner B., Plzák Z. High-performance liquid chromatographic separations of boron- cluster compounds. J. Chromatogr. A. 1997;789:497–517. doi: 10.1016/S0021-9673(97)00497-4. DOI
Sheldrick G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. A. 2015;71:3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC