Effects of Cd and Zn on physiological and anatomical properties of hydroponically grown Brassica napus plants

. 2017 Sep ; 24 (25) : 20705-20716. [epub] 20170716

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28714046

Grantová podpora
SV 2103/2015 Particular Research Program, UHK
SV 2103/2015 Particular Research Program, UHK
LO1417 Czech Ministry of Education, Youth and Sports

Odkazy

PubMed 28714046
DOI 10.1007/s11356-017-9697-7
PII: 10.1007/s11356-017-9697-7
Knihovny.cz E-zdroje

Clarifying the connection between metal exposure and anatomical changes represents an important challenge for a better understanding of plant phytoextraction potential. A hydroponic screening experiment was carried out to evaluate the effects of combined interactions of Cd and Zn on mineral uptake (Mg, K, Ca, Na) and on the physiological and anatomical characteristics of Brassica napus L cv. Cadeli, Viking, and Navajo. Plants were exposed to 5 μM Cd (CdCl2), 10 μM Zn (ZnSO4), or both Cd + Zn, for 14 days. Cadmium exposure led to a significant reduction in root growth, shoot biomass, and chlorophyll content. After Cd-only and Cd + Zn treatment, primary root tips became thicker and pericycle cells were enlarged compared to the control and Zn-only treatment. No differences between metals were observed under UV excitation, where all treatments showed more intensive autofluorescence connected with lignin/suberin accumulation compared to control conditions. The highest concentrations of Cd and Zn were found in the roots of all tested plants, and translocation factors did not exceed the threshold of 1.0. The root mineral composition was not affected by any treatment. In the shoots, the Mg concentration slightly increased after Cd-only and Cd + Zn treatments, whereas Zn-only treatment caused a sharp decrease in Ca content. Slight increases in K were seen after the addition of Zn. Significantly higher concentrations of Na were induced by Cd- or Zn-only treatment.

Zobrazit více v PubMed

Plant Physiol. 2004 Nov;136(3):3712-23 PubMed

Sci Total Environ. 2008 Aug 1;400(1-3):162-72 PubMed

Environ Pollut. 2008 Mar;152(1):32-40 PubMed

Trends Plant Sci. 2013 Feb;18(2):92-9 PubMed

Plant Cell Environ. 2006 Aug;29(8):1532-44 PubMed

Plant Physiol. 2009 Nov;151(3):1329-38 PubMed

Plant Physiol. 2009 Feb;149(2):894-904 PubMed

J Environ Sci (China). 2011;23(5):837-44 PubMed

New Phytol. 2009;181(3):637-50 PubMed

Plant Physiol Biochem. 2012 Aug;57:15-22 PubMed

J Trace Elem Med Biol. 2006;20(2):89-96 PubMed

Ecotoxicology. 2011 Jun;20(4):815-26 PubMed

Am J Bot. 2001 Aug;88(8):1359-70 PubMed

Environ Sci Pollut Res Int. 2016 Jun;23 (11):10693-701 PubMed

Biochim Biophys Acta. 2012 Sep;1823(9):1553-67 PubMed

PLoS One. 2014 Jan 27;9(1):e87582 PubMed

Environ Pollut. 2004 Nov;132(1):21-7 PubMed

Toxicol Ind Health. 2011 Feb;27(1):73-80 PubMed

J Exp Bot. 2011 Jan;62(1):21-37 PubMed

Int J Mol Sci. 2012;13(6):6604-19 PubMed

Environ Toxicol Chem. 2017 Jan;36(1):220-230 PubMed

Development. 1995 Oct;121(10):3303-10 PubMed

Rev Environ Health. 2006 Apr-Jun;21(2):139-52 PubMed

J Exp Bot. 2014 Mar;65(3):849-58 PubMed

Sci Total Environ. 2002 Feb 21;285(1-3):187-95 PubMed

Int J Phytoremediation. 2017 Feb;19(2):133-141 PubMed

Environ Geochem Health. 2004 Jun-Sep;26(2-3):319-24 PubMed

Environ Sci Pollut Res Int. 2016 Feb;23 (4):3758-69 PubMed

New Phytol. 2007;173(3):495-508 PubMed

Metallomics. 2014 Aug;6(8):1313-23 PubMed

ScientificWorldJournal. 2015;2015:756120 PubMed

Ecotoxicol Environ Saf. 2017 Apr;138:271-278 PubMed

Ann Bot. 2005 Sep;96(4):625-38 PubMed

Curr Opin Plant Biol. 2009 Jun;12(3):259-66 PubMed

Plant Physiol. 2007 Jun;144(2):1052-65 PubMed

Ecotoxicol Environ Saf. 2012 Dec;86:198-203 PubMed

Ann Bot. 2003 Oct;92(4):487-511 PubMed

Rev Environ Contam Toxicol. 2017;241:73-137 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...