On the Possibility of an Early Evolutionary Origin for the Spliced Leader Trans-Splicing
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
VEGA 1/0626/13
Scientific Grant Agency of the Slovak Ministry of Education and the Academy of Sciences
VEGA 1/0535/17
Scientific Grant Agency of the Slovak Ministry of Education and the Academy of Sciences
ITMS 26210120024
Research & Development Operational Programme funded by the ERDF
PubMed
28744787
DOI
10.1007/s00239-017-9803-y
PII: 10.1007/s00239-017-9803-y
Knihovny.cz E-zdroje
- Klíčová slova
- Intron, RNA secondary structure, SL-RNA, Sm-binding site, Spliceosome,
- MeSH
- Eukaryota genetika metabolismus MeSH
- fylogeneze MeSH
- molekulární evoluce * MeSH
- prekurzory RNA metabolismus MeSH
- RNA se sestřihovou vedoucí sekvencí genetika metabolismus MeSH
- trans-splicing * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- prekurzory RNA MeSH
- RNA se sestřihovou vedoucí sekvencí MeSH
Trans-splicing is a process by which 5'- and 3'-ends of two pre-RNA molecules transcribed from different sites of the genome can be joined together to form a single RNA molecule. The spliced leader (SL) trans-splicing is mediated by the spliceosome and it allows the replacement of 5'-end of pre-mRNA by 5'(SL)-end of SL-RNA. This form of splicing has been observed in many phylogenetically unrelated eukaryotes. Either the SL trans-splicing (SLTS) originated in the last eukaryotic common ancestor (LECA) (or even earlier) and it was lost in most eukaryotic lineages, or this mechanism of RNA processing evolved several times independently in various unrelated eukaryotic taxa. The bioinformatic comparisons of SL-RNAs from various eukaryotic taxonomic groups have revealed the similarities of secondary structures of most SL-RNAs and a relative conservation of their splice sites (SSs) and Sm-binding sites (SmBSs). We propose that such structural and functional similarities of SL-RNAs are unlikely to have evolved repeatedly many times. Hence, we favor the scenario of an early evolutionary origin for the SLTS and multiple losses of SL-RNAs in various eukaryotic lineages.
Zobrazit více v PubMed
J Biol Chem. 1991 Dec 5;266(34):22792-5 PubMed
RNA. 1995 Jun;1(4):351-62 PubMed
Mol Syst Biol. 2011 Oct 11;7:539 PubMed
Curr Genet. 1999 Jun;35(5):542-50 PubMed
RNA. 1996 Aug;2(8):735-45 PubMed
Bioinformatics. 2009 May 1;25(9):1189-91 PubMed
Eukaryot Cell. 2003 Oct;2(5):830-40 PubMed
J Mol Evol. 2012 Jun;74(5-6):342-51 PubMed
Gene. 2014 Jan 1;533(1):156-67 PubMed
J Mol Biol. 2002 Jun 21;319(5):1059-66 PubMed
Microbes Infect. 2003 Nov;5(13):1231-40 PubMed
Proc Natl Acad Sci U S A. 1990 Nov;87(22):8879-83 PubMed
RNA. 2010 Aug;16(8):1500-7 PubMed
Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4618-23 PubMed
Nucleic Acids Res. 1987 Apr 10;15(7):3141-53 PubMed
Mol Biol Evol. 2010 Mar;27(3):684-93 PubMed
WormBook. 2015 Apr 28;:1-20 PubMed
PLoS Negl Trop Dis. 2012 Jan;6(1):e1455 PubMed
Brief Funct Genomic Proteomic. 2004 Nov;3(3):199-211 PubMed
BMC Genomics. 2010 Feb 11;11:106 PubMed
Cell. 1993 Dec 17;75(6):1049-59 PubMed
Sci Rep. 2015 Dec 01;5:17411 PubMed
Nature. 1988 Oct 6;335(6190):556-9 PubMed
Algorithms Mol Biol. 2011 Nov 24;6:26 PubMed
Proc Natl Acad Sci U S A. 2001 May 8;98(10):5693-8 PubMed
J Eukaryot Microbiol. 2009 Mar-Apr;56(2):159-66 PubMed
Mol Biol Evol. 2011 Apr;28(4):1469-80 PubMed
Mol Cell Biol. 1999 Feb;19(2):1595-604 PubMed
Curr Biol. 2006 Jan 10;16(1):R8-9 PubMed
WormBook. 2012 Nov 20;:1-11 PubMed
Nucleic Acids Res. 2005 Apr 29;33(8):2493-503 PubMed
Cell. 1990 Sep 7;62(5):889-99 PubMed
Trends Genet. 2001 Dec;17(12):678-80 PubMed
Nucleic Acids Res. 1986 Sep 25;14(18):7341-60 PubMed
J Bioinform Comput Biol. 2010 Feb;8(1):1-17 PubMed
Nature. 2006 Oct 19;443(7113):863-6 PubMed
J Biol Chem. 1992 May 15;267(14):9805-15 PubMed
Genome Biol. 2008;9(6):R94 PubMed
Zoolog Sci. 2010 Feb;27(2):171-80 PubMed
Nature. 1988 Oct 6;335(6190):559-62 PubMed
Trends Genet. 2005 Apr;21(4):240-7 PubMed
Cell. 1988 Aug 12;54(4):533-9 PubMed
Wiley Interdiscip Rev RNA. 2011 May-Jun;2(3):417-34 PubMed
Genome Biol Evol. 2017 Mar 1;9(3):468-473 PubMed
Curr Genet. 2011 Dec;57(6):367-90 PubMed
Nucleic Acids Res. 2010 Aug;38(15):4946-57 PubMed
Mol Biol Evol. 2005 Oct;22(10):2048-54 PubMed
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12214-12219 PubMed
Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9751-6 PubMed
Nature. 2002 Jun 6;417(6889):667-70 PubMed
Int J Parasitol. 1996 Oct;26(10):1025-33 PubMed
Mol Biochem Parasitol. 1997 Jul;87(1):29-48 PubMed
Mol Biochem Parasitol. 2000 Apr 15;107(2):269-77 PubMed
Annu Rev Microbiol. 1993;47:413-40 PubMed
RNA. 1995 Sep;1(7):714-23 PubMed
Mol Biol Evol. 2005 Jun;22(6):1482-9 PubMed
J Eukaryot Microbiol. 2012 Nov-Dec;59(6):651-3 PubMed
RNA. 2010 Apr;16(4):696-707 PubMed
Mol Cell Biol. 1990 Apr;10(4):1769-72 PubMed
PLoS One. 2011;6(5):e19933 PubMed
EMBO J. 1991 Dec;10(12):3869-75 PubMed
Genome Res. 2011 Feb;21(2):255-64 PubMed
Mol Cell Biol. 2004 Sep;24(17):7795-805 PubMed
J Mol Evol. 2012 Apr;74(3-4):226-31 PubMed
Bioinformatics. 2009 Aug 1;25(15):1974-5 PubMed
Biochemistry. 1993 May 25;32(20):5301-11 PubMed
Mol Biol Evol. 2009 Aug;26(8):1757-71 PubMed
J Eukaryot Microbiol. 2007 Sep-Oct;54(5):427-35 PubMed
Curr Opin Struct Biol. 2001 Jun;11(3):348-53 PubMed
Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W79-84 PubMed
Front Genet. 2013 Oct 11;4:199 PubMed
BMC Evol Biol. 2010 Feb 17;10:47 PubMed
Curr Genet. 2014 Feb;60(1):17-24 PubMed
Parasitol Today. 1996 Jan;12(1):33-40 PubMed
Mol Biochem Parasitol. 1995 Jul;73(1-2):1-6 PubMed
DNA Res. 2010 Aug;17(4):223-31 PubMed
J Biol Chem. 2000 Dec 8;275(49):38311-8 PubMed
Nat Rev Mol Cell Biol. 2014 Feb;15(2):108-21 PubMed
Nucleic Acids Res. 2003 Jul 1;31(13):3406-15 PubMed
Mol Cell Biol. 2000 Sep;20(18):6659-67 PubMed
J Biol Chem. 1995 Sep 15;270(37):21813-9 PubMed
Bioinformatics. 2005 Aug 15;21(16):3352-9 PubMed
Science. 2005 Jul 15;309(5733):416-22 PubMed