Trans-splicing of mRNAs links gene transcription to translational control regulated by mTOR
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
183690/S10 NFR-FUGE
Norges Forskningsråd
133335/V40
Norges Forskningsråd
PubMed
31783727
PubMed Central
PMC6883708
DOI
10.1186/s12864-019-6277-x
PII: 10.1186/s12864-019-6277-x
Knihovny.cz E-zdroje
- MeSH
- Caenorhabditis elegans genetika růst a vývoj MeSH
- genetická transkripce * MeSH
- messenger RNA chemie metabolismus MeSH
- nukleotidové motivy MeSH
- oocyty metabolismus MeSH
- proteosyntéza * MeSH
- regulace genové exprese * MeSH
- savci genetika MeSH
- TOR serin-threoninkinasy antagonisté a inhibitory metabolismus MeSH
- trans-splicing * MeSH
- Urochordata genetika MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- messenger RNA MeSH
- TOR serin-threoninkinasy MeSH
BACKGROUND: In phylogenetically diverse organisms, the 5' ends of a subset of mRNAs are trans-spliced with a spliced leader (SL) RNA. The functions of SL trans-splicing, however, remain largely enigmatic. RESULTS: We quantified translation genome-wide in the marine chordate, Oikopleura dioica, under inhibition of mTOR, a central growth regulator. Translation of trans-spliced TOP mRNAs was suppressed, consistent with a role of the SL sequence in nutrient-dependent translational control of growth-related mRNAs. Under crowded, nutrient-limiting conditions, O. dioica continued to filter-feed, but arrested growth until favorable conditions returned. Upon release from unfavorable conditions, initial recovery was independent of nutrient-responsive, trans-spliced genes, suggesting animal density sensing as a first trigger for resumption of development. CONCLUSION: Our results are consistent with a proposed role of trans-splicing in the coordinated translational down-regulation of nutrient-responsive genes under growth-limiting conditions.
Computational Biology Unit Department of Informatics University of Bergen Bergen Norway
Department of Biological Sciences University of Bergen Bergen Norway
Sars International Centre for Marine Molecular Biology University of Bergen Bergen Norway
Zobrazit více v PubMed
Douris V, Telford MJ, Averof M. Evidence for multiple independent origins of trans-splicing in Metazoa. Mol Biol Evol. 2010;27:684–693. doi: 10.1093/molbev/msp286. PubMed DOI
Krchňáková Z, Krajčovič J, Vesteg M. On the possibility of an early evolutionary origin for the spliced leader trans-splicing. J Mol Evol. 2017;85:37–45. doi: 10.1007/s00239-017-9803-y. PubMed DOI
Hastings KE. SL trans-splicing: easy come or easy go? Trends Genet. 2005;21:240–247. doi: 10.1016/j.tig.2005.02.005. PubMed DOI
Blumenthal T, Gleason KS. Caenorhabditis elegans operons: form and function. Nat Rev Genet. 2003;4:110–118. doi: 10.1038/nrg995. PubMed DOI
Danks GB, Raasholm M, Campsteijn C, Long AM, Manak JR, Lenhard B, Thompson EM. Trans-splicing and operons in metazoans: translational control in maternally regulated development and recovery from growth arrest. Mol Biol Evol. 2015;32:585–599. doi: 10.1093/molbev/msu336. PubMed DOI
Danks G, Thompson EM. Trans-splicing in metazoans: a link to translational control? Worm. 2015;4:e1046030. doi: 10.1080/21624054.2015.1046030. PubMed DOI PMC
Levy S, Avni D, Hariharan N, Perry RP, Meyuhas O. Oligopyrimidine tract at the 5′ end of mammalian ribosomal protein mRNAs is required for their translational control. Proc Natl Acad Sci U S A. 1991;88:3319–3323. doi: 10.1073/pnas.88.8.3319. PubMed DOI PMC
Hsieh AC, Liu Y, Edlind MP, et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature. 2012;485:55–61. doi: 10.1038/nature10912. PubMed DOI PMC
Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS, Sabatini DM. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature. 2012;485:109–113. doi: 10.1038/nature11083. PubMed DOI PMC
Zaslaver A, Baugh LR, Sternberg PW. Metazoan operons accelerate recovery from growth-arrested states. Cell. 2011;145:981–992. doi: 10.1016/j.cell.2011.05.013. PubMed DOI PMC
Troedsson C, Bouquet JM, Aksnes D, Thompson EM. Resource allocation between somatic growth and reproductive output in the pelagic chordate Oikopleura dioica allows opportunistic response to nutritional variation. Mar Ecol Prog Ser. 2002;243:83–91. doi: 10.3354/meps243083. DOI
Ganot P, Bouquet JM, Kallesøe T, Thompson EM. The Oikopleura coenocyst, a unique chordate germ cell permitting rapid, extensive modulation of oocyte production. Dev Biol. 2007;302:591–600. doi: 10.1016/j.ydbio.2006.10.021. PubMed DOI
Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem. 2009;284:8023–8032. doi: 10.1074/jbc.M900301200. PubMed DOI PMC
Subramaniam G, Campsteijn C, Thompson EM. Lifespan extension in a semelparous chordate occurs via developmental growth arrest just prior to meiotic entry. PLoS One. 2014;9:e93787. doi: 10.1371/journal.pone.0093787. PubMed DOI PMC
Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc. 2012;7:1534–1550. doi: 10.1038/nprot.2012.086. PubMed DOI PMC
Ganot P, Kallesøe T, Thompson EM. The cytoskeleton organizes germ nuclei with divergent fates and asynchronous cycles in a common cytoplasm during oogenesis in the chordate Oikopleura. Dev Biol. 2007;302:577–590. doi: 10.1016/j.ydbio.2006.10.022. PubMed DOI
Ganot P, Moosmann-Schulmeister A, Thompson EM. Oocyte selection is concurrent with meiosis resumption in the coenocystic oogenesis of Oikopleura. Dev Biol. 2008;324:266–276. doi: 10.1016/j.ydbio.2008.09.016. PubMed DOI
Meyuhas O, Kahan T. The race to decipher the TOP secrets of TOP mRNAs. Biochim Biophys Acta. 2015;1849:801–811. doi: 10.1016/j.bbagrm.2014.08.015. PubMed DOI
Yokomori R, Shimai K, Nishitsuji K, Suzuki Y, Kusakabe TG, Nakai K. Genome-wide identification and characterization of transcription start sites and promoters in the tunicate Ciona intestinalis. Genome Res. 2016;26:140–150. doi: 10.1101/gr.184648.114. PubMed DOI PMC
Meyuhas O. Synthesis of the translational apparatus is regulated at the translational level. Eur J Biochem. 2001;267:6321–6330. doi: 10.1046/j.1432-1327.2000.01719.x. PubMed DOI
Ganot P, Kallesøe T, Reinhardt R, Chourrout D, Thompson EM. Spliced-leader RNA trans splicing in a chordate, Oikopleura dioica, with a compact genome. Mol Cell Biol. 2004;24:7795–7805. doi: 10.1128/MCB.24.17.7795-7805.2004. PubMed DOI PMC
Danks G, Campsteijn C, Parida M, et al. OikoBase: a genomics and developmental transcriptomics resource for the urochordate Oikopleura dioica. Nucleic Acids Res. 2013;41:D845–D853. doi: 10.1093/nar/gks1159. PubMed DOI PMC
Danks GB, Navratilova P, Lenhard B, Thompson EM. Distinct core promoter codes drive transcription initiation at key developmental transitions in a marine chordate. BMC Genomics. 2018;19:164. doi: 10.1186/s12864-018-4504-5. PubMed DOI PMC
Allen MA, Hillier LW, Waterston RH, Blumenthal T. A global analysis of C. elegans trans-splicing. Genome Res. 2011;21:255–264. doi: 10.1101/gr.113811.110. PubMed DOI PMC
Stadler M, Fire A. Conserved translatome remodeling in nematode species executing a shared developmental transition. PLoS Genet. 2013;9:e1003739. doi: 10.1371/journal.pgen.1003739. PubMed DOI PMC
Yang YF, Zhang X, Ma X, Zhao T, Sun Q, Huan Q, Wu S, Du Z, Qian W. Trans-splicing enhances translational efficiency in C. elegans. Genome Res. 2017;27:1525–1535. doi: 10.1101/gr.202150.115. PubMed DOI PMC
Avni D, Biberman Y, Meyuhas O. The 5′ terminal oligopyrimidine tract confers translational control on TOP mRNAs in a cell type- and sequence context-dependent manner. Nucleic Acids Res. 1997;25:995–1001. doi: 10.1093/nar/25.5.995. PubMed DOI PMC
Bouquet JM, Spriet E, Troedsson C, Otterå H, Chourrout D, Thompson EM. Culture optimization for the emergent zooplanktonic model organism Oikopleura dioica. J Plankton Res. 2009;31:359–370. doi: 10.1093/plankt/fbn132. PubMed DOI PMC
Sambrook J, Russell DW. Purification of nucleic acids by extraction with phenol:chloroform. 2006. PubMed
Olshen AB, Hsieh AC, Stumpf CR, Olshen RA, Ruggero D, Taylor BS. Assessing gene-level translational control from ribosome profiling. Bioinformatics. 2013;29:2995–3002. doi: 10.1093/bioinformatics/btt533. PubMed DOI PMC