Mn3O4 Nanocrystal-Induced Eryptosis Features Ca2+ Overload, ROS and RNS Accumulation, Calpain Activation, Recruitment of Caspases, and Changes in the Lipid Order of Cell Membranes

. 2025 Apr 01 ; 26 (7) : . [epub] 20250401

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40244142

Grantová podpora
EHA Ukraine Bridge Funding European Hematology Association
DRO - VFN00064165 MH CR
EXCELES - LX22NPO5102 NICR
Cooperatio MEYS CR

Accumulating evidence suggests that manganese oxide nanoparticles (NPs) show multiple enzyme-mimicking antioxidant activities, which supports their potential in redox-targeting therapeutic strategies for diseases with impaired redox signaling. However, the systemic administration of any NP requires thorough hemocompatibility testing. In this study, we assessed the hemocompatibility of synthesized Mn3O4 NPs, identifying their ability to induce spontaneous hemolysis and eryptosis or impair osmotic fragility. Concentrations of up to 20 mg/L were found to be safe for erythrocytes. Eryptosis assays were shown to be more sensitive than hemolysis and osmotic fragility as markers of hemocompatibility for Mn3O4 NP testing. Flow cytometry- and confocal microscopy-based studies revealed that eryptosis induced by Mn3O4 NPs was accompanied by Ca2+ overload, altered redox homeostasis verified by enhanced intracellular reactive oxygen species (ROS) and reactive nitrogen species (RNS), and a decrease in the lipid order of cell membranes. Furthermore, Mn3O4 NP-induced eryptosis was calpain- and caspase-dependent.

Zobrazit více v PubMed

de la Harpe K.M., Kondiah P.P.D., Choonara Y.E., Marimuthu T., du Toit L.C., Pillay V. The Hemocompatibility of Nanoparticles: A Review of Cell-Nanoparticle Interactions and Hemostasis. Cells. 2019;8:1209. doi: 10.3390/cells8101209. PubMed DOI PMC

Tran H.D.N., Akther F., Xu Z.P., Ta H.T. Chapter 6—Effects of nanoparticles on the blood coagulation system (nanoparticle interface with the blood coagulation system) In: Denizli A., Nguyen T.A., Rajan M., Alam M.F., Rahman K., editors. Nanotechnology for Hematology, Blood Transfusion, and Artificial Blood. Elsevier; Amsterdam, The Netherlands: 2022. pp. 113–140.

Hofer S., Hofstätter N., Punz B., Hasenkopf I., Johnson L., Himly M. Immunotoxicity of nanomaterials in health and disease: Current challenges and emerging approaches for identifying immune modifiers in susceptible populations. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022;14:e1804. PubMed PMC

Baskurt O.K., Meiselman H.J. Erythrocyte aggregation: Basic aspects and clinical importance. Clin. Hemorheol. Microcirc. 2013;53:23–37. doi: 10.3233/CH-2012-1573. PubMed DOI

Yedgar S., Barshtein G., Gural A. Hemolytic Activity of Nanoparticles as a Marker of Their Hemocompatibility. Micromachines. 2022;13:2091. doi: 10.3390/mi13122091. PubMed DOI PMC

Van Avondt K., Nur E., Zeerleder S. Mechanisms of haemolysis-induced kidney injury. Nat. Rev. Nephrol. 2019;15:671–692. PubMed

Bozza M.T., Jeney V. Pro-inflammatory Actions of Heme and Other Hemoglobin-Derived DAMPs. Front. Immunol. 2020;11:1323. PubMed PMC

Tkachenko A. Hemocompatibility studies in nanotoxicology: Hemolysis or eryptosis? (A review) Toxicol. Vitr. 2024;98:105814. PubMed

Lang K.S., Lang P.A., Bauer C., Duranton C., Wieder T., Huber S.M., Lang F. Mechanisms of suicidal erythrocyte death. Cell Physiol. Biochem. 2005;15:195–202. PubMed

Dreischer P., Duszenko M., Stein J., Wieder T. Eryptosis: Programmed Death of Nucleus-Free, Iron-Filled Blood Cells. Cells. 2022;11:503. doi: 10.3390/cells11030503. PubMed DOI PMC

Tkachenko A., Onishchenko A. Casein kinase 1α mediates eryptosis: A review. Apoptosis. 2023;28:1–19. PubMed

Tkachenko A. Apoptosis and eryptosis: Similarities and differences. Apoptosis. 2024;29:482–502. doi: 10.1007/s10495-023-01915-4. PubMed DOI

Liu X., Wang Q., Zhao H., Zhang L., Su Y., Lv Y. BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics. Analyst. 2012;137:4552–4558. PubMed

Huang Y., Liu Z., Liu C., Ju E., Zhang Y., Ren J., Qu X. Self-Assembly of Multi-nanozymes to Mimic an Intracellular Antioxidant Defense System. Angew. Chem. Int. Ed. Engl. 2016;55:6646–6650. PubMed

Singh N., Savanur M.A., Srivastava S., D’Silva P., Mugesh G. A Redox Modulatory Mn3O4 Nanozyme with Multi-Enzyme Activity Provides Efficient Cytoprotection to Human Cells in a Parkinson’s Disease Model. Angew. Chem. Int. Ed. Engl. 2017;56:14267–14271. doi: 10.1002/anie.201708573. PubMed DOI

Yao J., Cheng Y., Zhou M., Zhao S., Lin S., Wang X., Wu J., Li S., Wei H. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem. Sci. 2018;9:2927–2933. PubMed PMC

Shan X., Li J., Liu J., Feng B., Zhang T., Liu Q., Ma H., Wu H., Wu H. Targeting ferroptosis by poly(acrylic) acid coated Mn3O4 nanoparticles alleviates acute liver injury. Nat. Commun. 2023;14:7598. PubMed PMC

Rónavári A., Ochirkhuyag A., Igaz N., Szerencsés B., Ballai G., Huliák I., Bocz C., Kovács Á., Pfeiffer I., Kiricsi M., et al. Preparation, characterization and in vitro evaluation of the antimicrobial and antitumor activity of MnOx nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2024;688:133528.

Chen X., Wu G., Zhang Z., Ma X., Liu L. Neurotoxicity of Mn3O4 nanoparticles: Apoptosis and dopaminergic neurons damage pathway. Ecotoxicol. Environ. Saf. 2020;188:109909. PubMed

Fernández-Pampín N., González Plaza J.J., García-Gómez A., Peña E., Rumbo C., Barros R., Martel-Martín S., Aparicio S., Tamayo-Ramos J.A. Toxicology assessment of manganese oxide nanomaterials with enhanced electrochemical properties using human in vitro models representing different exposure routes. Sci. Rep. 2022;12:20991. PubMed PMC

Tkachenko A., Havranek O. Cell death signaling in human erythron: Erythrocytes lose the complexity of cell death machinery upon maturation. Apoptosis. 2025;30:652–673. PubMed PMC

Shaik M.R., Syed R., Adil S.F., Kuniyil M., Khan M., Alqahtani M.S., Shaik J.P., Siddiqui M.R.H., Al-Warthan A., Sharaf M.A.F., et al. Mn3O4 nanoparticles: Synthesis, characterization and their antimicrobial and anticancer activity against A549 and MCF-7 cell lines. Saudi J. Biol. Sci. 2021;28:1196–1202. doi: 10.1016/j.sjbs.2020.11.087. PubMed DOI PMC

Bissinger R., Bhuyan A.A.M., Qadri S.M., Lang F. Oxidative stress, eryptosis and anemia: A pivotal mechanistic nexus in systemic diseases. FEBS J. 2019;286:826–854. PubMed

Tkachenko A., Havránek O. Redox Status of Erythrocytes as an Important Factor in Eryptosis and Erythronecroptosis. Folia Biol. 2023;69:116–126. PubMed

Matarrese P., Straface E., Pietraforte D., Gambardella L., Vona R., Maccaglia A., Minetti M., Malorni W. Peroxynitrite induces senescence and apoptosis of red blood cells through the activation of aspartyl and cysteinyl proteases. FASEB J. 2005;19:416–418. PubMed

Van der Paal J., Neyts E.C., Verlackt C.C.W., Bogaerts A. Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress. Chem. Sci. 2016;7:489–498. PubMed PMC

Zangeneh A.R., Takhshid M.A., Ranjbaran R., Maleknia M., Meshkibaf M.H. Diverse Effect of Vitamin C and N-Acetylcysteine on Aluminum-Induced Eryptosis. Biochem. Res. Int. 2021;2021:6670656. doi: 10.1155/2021/6670656. PubMed DOI PMC

Tkachenko M., Onishchenko A., Tryfonyuk L., Butov D., Kot K., Novikova V., Fan L., Prokopiuk V., Kot Y., Tkachenko A. Human chemerin induces eryptosis at concentrations exceeding circulating levels. Biocell. 2024;48:1197–1208. doi: 10.32604/biocell.2024.050206. DOI

Föller M., Lang F. Ion Transport in Eryptosis, the Suicidal Death of Erythrocytes. Front. Cell Dev. Biol. 2020;8:597. PubMed PMC

Berg C.P., Engels I.H., Rothbart A., Lauber K., Renz A., Schlosser S.F., Schulze-Osthoff K., Wesselborg S. Human mature red blood cells express caspase-3 and caspase-8, but are devoid of mitochondrial regulators of apoptosis. Cell Death Differ. 2001;8:1197–1206. PubMed

Bratosin D., Estaquier J., Petit F., Arnoult D., Quatannens B., Tissier J.P., Slomianny C., Sartiaux C., Alonso C., Huart J.J., et al. Programmed cell death in mature erythrocytes: A model for investigating death effector pathways operating in the absence of mitochondria. Cell Death Differ. 2001;8:1143–1156. PubMed

Mandal D., Mazumder A., Das P., Kundu M., Basu J. Fas-, Caspase 8-, and Caspase 3-dependent Signaling Regulates the Activity of the Aminophospholipid Translocase and Phosphatidylserine Externalization in Human Erythrocytes. J. Biol. Chem. 2005;280:39460–39467. doi: 10.1074/jbc.M506928200. PubMed DOI

Restivo I., Attanzio A., Giardina I.C., Di Gaudio F., Tesoriere L., Allegra M. Cigarette Smoke Extract Induces p38 MAPK-Initiated, Fas-Mediated Eryptosis. Int. J. Mol. Sci. 2022;23:14730. doi: 10.3390/ijms232314730. PubMed DOI PMC

Restivo I., Attanzio A., Tesoriere L., Allegra M., Garcia-Llatas G., Cilla A. A Mixture of Dietary Plant Sterols at Nutritional Relevant Serum Concentration Inhibits Extrinsic Pathway of Eryptosis Induced by Cigarette Smoke Extract. Int. J. Mol. Sci. 2023;24:1264. doi: 10.3390/ijms24021264. PubMed DOI PMC

Tkachenko A., Havranek O. Erythronecroptosis: An overview of necroptosis or programmed necrosis in red blood cells. Mol. Cell. Biochem. 2024;479:3273–3291. PubMed

Dias G.F., Grobe N., Rogg S., Jörg D.J., Pecoits-Filho R., Moreno-Amaral A.N., Kotanko P. The Role of Eryptosis in the Pathogenesis of Renal Anemia: Insights from Basic Research and Mathematical Modeling. Front. Cell Dev. Biol. 2020;8:598148. doi: 10.3389/fcell.2020.598148. PubMed DOI PMC

Borst O., Abed M., Alesutan I., Towhid S.T., Qadri S.M., Föller M., Gawaz M., Lang F. Dynamic adhesion of eryptotic erythrocytes to endothelial cells via CXCL16/SR-PSOX. Am. J. Physiol. Cell Physiol. 2012;302:C644–C651. doi: 10.1152/ajpcell.00340.2011. PubMed DOI

Tkachenko A.S., Kot Y.G., Kapustnik V.A., Myasoedov V.V., Makieieva N.I., Chumachenko T.O., Onishchenko A.I., Lukyanova Y.M., Nakonechna O.A. Semi-refined carrageenan promotes generation of reactive oxygen species in leukocytes of rats upon oral exposure but not in vitro. Wien. Med. Wochenschr. 2021;171:68–78. doi: 10.1007/s10354-020-00786-7. PubMed DOI

Brands J., Bravo S., Jürgenliemke L., Grätz L., Schihada H., Frechen F., Alenfelder J., Pfeil C., Ohse P.G., Hiratsuka S., et al. A molecular mechanism to diversify Ca2+ signaling downstream of Gs protein-coupled receptors. Nat. Commun. 2024;15:7684. doi: 10.1038/s41467-024-51991-6. PubMed DOI PMC

Klymchenko A.S. Fluorescent Probes for Lipid Membranes: From the Cell Surface to Organelles. Acc. Chem. Res. 2023;56:1–12. PubMed

Pyrshev K.A., Yesylevskyy S.O., Mély Y., Demchenko A.P., Klymchenko A.S. Caspase-3 activation decreases lipid order in the outer plasma membrane leaflet during apoptosis: A fluorescent probe study. Biochim. Biophys. Acta Biomembr. 2017;1859:2123–2132. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...