• This record comes from PubMed

Erythronecroptosis: an overview of necroptosis or programmed necrosis in red blood cells

. 2024 Dec ; 479 (12) : 3273-3291. [epub] 20240301

Language English Country Netherlands Media print-electronic

Document type Journal Article, Review

Grant support
Ukraine Bridge Funding European Hematology Association
UNCE/MED/016, Cooperatio Univerzita Karlova v Praze

Links

PubMed 38427167
DOI 10.1007/s11010-024-04948-8
PII: 10.1007/s11010-024-04948-8
Knihovny.cz E-resources

Necroptosis is considered a programmed necrosis that requires receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), and pore-forming mixed lineage kinase domain-like protein (MLKL) to trigger a regulated cell membrane lysis. Membrane rupture in necroptosis has been shown to fuel innate immune response due to release of damage-associated molecular patterns (DAMPs). Recently published studies indicate that mature erythrocytes can undergo necroptosis as well. In this review, we provide an outline of multiple cell death modes occurring in erythrocytes, discuss possible immunological aspects of diverse erythrocyte cell deaths, summarize available evidence related to the ability of erythrocytes to undergo necroptosis, outline key involved molecular mechanisms, and discuss the potential implication of erythrocyte necroptosis in the physiology and pathophysiology. Furthermore, we aim to highlight the interplay between necroptosis and eryptosis signaling in erythrocytes, emphasizing specific characteristics of these pathways distinct from their counterparts in nucleated cells. Thus, our review provides a comprehensive summary of the current knowledge of necroptosis in erythrocytes. To reflect critical differences between necroptosis of nucleated cells and necroptosis of erythrocytes, we suggest a term erythronecroptosis for necroptosis of enucleated cells.

See more in PubMed

Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, Alnemri ES, Altucci L, Andrews D, Annicchiarico-Petruzzelli M, Baehrecke EH, Bazan NG, Bertrand MJ, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Bredesen DE, Brenner C, Campanella M, Candi E, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, Di Daniele N, Dixit VM, Dynlacht BD, El-Deiry WS, Fimia GM, Flavell RA, Fulda S, Garrido C, Gougeon ML, Green DR, Gronemeyer H, Hajnoczky G, Hardwick JM, Hengartner MO, Ichijo H, Joseph B, Jost PJ, Kaufmann T, Kepp O, Klionsky DJ, Knight RA, Kumar S, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lugli E, Madeo F, Malorni W, Marine JC, Martin SJ, Martinou JC, Medema JP, Meier P, Melino S, Mizushima N, Moll U, Muñoz-Pinedo C, Nuñez G, Oberst A, Panaretakis T, Penninger JM, Peter ME, Piacentini M, Pinton P, Prehn JH, Puthalakath H, Rabinovich GA, Ravichandran KS, Rizzuto R, Rodrigues CM, Rubinsztein DC, Rudel T, Shi Y, Simon HU, Stockwell BR, Szabadkai G, Tait SW, Tang HL, Tavernarakis N, Tsujimoto Y, Vanden Berghe T, Vandenabeele P, Villunger A, Wagner EF, Walczak H, White E, Wood WG, Yuan J, Zakeri Z, Zhivotovsky B, Melino G, Kroemer G (2015) Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 22:58–73. https://doi.org/10.1038/cdd.2014.137 PubMed DOI

Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257. https://doi.org/10.1038/bjc.1972.33 PubMed DOI PMC

Mishchenko T, Balalaeva I, Gorokhova A, Vedunova M, Krysko DV (2022) Which cell death modality wins the contest for photodynamic therapy of cancer? Cell Death Dis 13:455. https://doi.org/10.1038/s41419-022-04851-4 PubMed DOI PMC

D’Arcy MS (2019) Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43:582–592. https://doi.org/10.1002/cbin.11137 PubMed DOI

Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D’Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Muñoz-Pinedo C, Nagata S, Nuñez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25:486–541. https://doi.org/10.1038/s41418-017-0012-4 PubMed DOI PMC

Franko J, Pomfy M, Prosbová T (2000) Apoptosis and cell death (mechanisms, pharmacology and promise for the future). Acta Med (Hradec Kralove) 43:63–68 DOI

Cookson BT, Brennan MA (2001) Pro-inflammatory programmed cell death. Trends Microbiol 9:113–114. https://doi.org/10.1016/s0966-842x(00)01936-3 PubMed DOI

Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535. https://doi.org/10.1126/science.1092385 PubMed DOI

Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119. https://doi.org/10.1038/nchembio711 PubMed DOI

Overholtzer M, Mailleux AA, Mouneimne G, Normand G, Schnitt SJ, King RW, Cibas ES, Brugge JS (2007) A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell 131:966–979. https://doi.org/10.1016/j.cell.2007.10.040 PubMed DOI

Andrabi SA, Dawson TM, Dawson VL (2008) Mitochondrial and nuclear cross talk in cell death: parthanatos. Ann N Y Acad Sci 1147:233–241. https://doi.org/10.1196/annals.1427.014 PubMed DOI PMC

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072. https://doi.org/10.1016/j.cell.2012.03.042 PubMed DOI PMC

Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, Eaton JK, Frenkel E, Kocak M, Corsello SM, Lutsenko S, Kanarek N, Santagata S, Golub TR (2022) Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375:1254–1261. https://doi.org/10.1126/science.abf0529 PubMed DOI PMC

Tkachenko A, Onishchenko A (2023) Zincoptosis: does it exist? Apoptosis. https://doi.org/10.1007/s10495-023-01836-2 PubMed DOI

Koren E, Fuchs Y (2021) Modes of regulated cell death in cancer. Cancer Discov 11:245–265. https://doi.org/10.1158/2159-8290.Cd-20-0789 PubMed DOI

Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, Chen Y, Han B (2022) Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther 7:286. https://doi.org/10.1038/s41392-022-01110-y PubMed DOI PMC

Cui J, Zhao S, Li Y, Zhang D, Wang B, Xie J, Wang J (2021) Regulated cell death: discovery, features and implications for neurodegenerative diseases. Cell Commun Signal 19:120. https://doi.org/10.1186/s12964-021-00799-8 PubMed DOI PMC

Aits S, Jäättelä M (2013) Lysosomal cell death at a glance. J Cell Sci 126:1905–1912. https://doi.org/10.1242/jcs.091181 PubMed DOI

Wang F, Gómez-Sintes R, Boya P (2018) Lysosomal membrane permeabilization and cell death. Traffic 19:918–931. https://doi.org/10.1111/tra.12613 PubMed DOI

Bock FJ, Tait SWG (2020) Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol 21:85–100. https://doi.org/10.1038/s41580-019-0173-8 PubMed DOI

Lang F, Qadri SM (2012) Mechanisms and significance of eryptosis, the suicidal death of erythrocytes. Blood Purif 33:125–130. https://doi.org/10.1159/000334163 PubMed DOI

Pretorius E, du Plooy JN, Bester J (2016) A comprehensive review on eryptosis. Cell Physiol Biochem 39:1977–2000. https://doi.org/10.1159/000447895 PubMed DOI

Tkachenko A, Onishchenko A (2022) Casein kinase 1α mediates eryptosis: a review. Apoptosis. https://doi.org/10.1007/s10495-022-01776-3 PubMed DOI

von Petersdorff-Campen K, Schmid Daners M (2022) Hemolysis Testing in vitro: a review of challenges and potential improvements. Asaio J 68:3–13. https://doi.org/10.1097/mat.0000000000001454 DOI

Tkachenko A, Onishchenko A, Myasoedov V, Yefimova S, Havranek O (2023) Assessing regulated cell death modalities as an efficient tool for in vitro nanotoxicity screening: a review. Nanotoxicology. https://doi.org/10.1080/17435390.2023.2203239 PubMed DOI

Alghareeb SA, Alfhili MA, Fatima S (2023) Molecular mechanisms and pathophysiological significance of eryptosis. Int J Mol Sci. https://doi.org/10.3390/ijms24065079 PubMed DOI PMC

LaRocca TJ, Stivison EA, Hod EA, Spitalnik SL, Cowan PJ, Randis TM, Ratner AJ (2014) Human-specific bacterial pore-forming toxins induce programmed necrosis in erythrocytes. mBio 5:e01251-14. https://doi.org/10.1128/mBio.01251-14 PubMed DOI PMC

Corrons JLV, Casafont LB, Frasnedo EF (2021) Concise review: how do red blood cells born, live, and die? Ann Hematol 100:2425–2433. https://doi.org/10.1007/s00277-021-04575-z PubMed DOI

Thiagarajan P, Parker CJ, Prchal JT (2021) How do red blood cells die? Front Physiol. https://doi.org/10.3389/fphys.2021.655393 PubMed DOI PMC

Zhang Q, Hu XM, Zhao WJ, Ban XX, Li Y, Huang YX, Wan H, He Y, Liao LS, Shang L, Jiang B, Qing GP, Xiong K (2023) Targeting Necroptosis: a novel therapeutic option for retinal degenerative diseases. Int J Biol Sci 19:658–674. https://doi.org/10.7150/ijbs.77994 PubMed DOI PMC

Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, Gough PJ, Sehon CA, Marquis RW, Bertin J, Mocarski ES (2013) Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem 288:31268–31279. https://doi.org/10.1074/jbc.M113.462341 PubMed DOI PMC

Dhuriya YK, Sharma D (2018) Necroptosis: a regulated inflammatory mode of cell death. J Neuroinflammation 15:199. https://doi.org/10.1186/s12974-018-1235-0 PubMed DOI PMC

Ye K, Chen Z, Xu Y (2023) The double-edged functions of necroptosis. Cell Death Dis 14:163. https://doi.org/10.1038/s41419-023-05691-6 PubMed DOI PMC

Liu C, Zhang K, Shen H, Yao X, Sun Q, Chen G (2018) Necroptosis: a novel manner of cell death, associated with stroke (Review). Int J Mol Med 41:624–630. https://doi.org/10.3892/ijmm.2017.3279 PubMed DOI

Yan J, Wan P, Choksi S, Liu ZG (2022) Necroptosis and tumor progression. Trends Cancer 8:21–27. https://doi.org/10.1016/j.trecan.2021.09.003 PubMed DOI

Martens S, Bridelance J, Roelandt R, Vandenabeele P, Takahashi N (2021) MLKL in cancer: more than a necroptosis regulator. Cell Death Differ 28:1757–1772. https://doi.org/10.1038/s41418-021-00785-0 PubMed DOI PMC

Liccardi G, Annibaldi A (2023) MLKL post-translational modifications: road signs to infection, inflammation and unknown destinations. Cell Death Differ 30:269–278. https://doi.org/10.1038/s41418-022-01061-5 PubMed DOI

Murao A, Aziz M, Wang H, Brenner M, Wang P (2021) Release mechanisms of major DAMPs. Apoptosis 26:152–162. https://doi.org/10.1007/s10495-021-01663-3 PubMed DOI PMC

Bertheloot D, Latz E, Franklin BS (2021) Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol 18:1106–1121. https://doi.org/10.1038/s41423-020-00630-3 PubMed DOI PMC

Orning P, Lien E (2021) Multiple roles of caspase-8 in cell death, inflammation, and innate immunity. J Leukoc Biol 109:121–141. https://doi.org/10.1002/jlb.3mr0420-305r PubMed DOI

Malireddi RKS, Kesavardhana S, Kanneganti TD (2019) ZBP1 and TAK1: master regulators of NLRP3 Inflammasome/pyroptosis, apoptosis, and necroptosis (PAN-optosis). Front Cell Infect Microbiol 9:406. https://doi.org/10.3389/fcimb.2019.00406 PubMed DOI PMC

Jiang M, Qi L, Li L, Wu Y, Song D, Li Y (2021) Caspase-8: a key protein of cross-talk signal way in “PANoptosis” in cancer. Int J Cancer 149:1408–1420. https://doi.org/10.1002/ijc.33698 PubMed DOI

Roberts JZ, Crawford N, Longley DB (2022) The role of ubiquitination in apoptosis and necroptosis. Cell Death Differ 29:272–284. https://doi.org/10.1038/s41418-021-00922-9 PubMed DOI

Karlowitz R, van Wijk SJL (2023) Surviving death: emerging concepts of RIPK3 and MLKL ubiquitination in the regulation of necroptosis. Febs J 290:37–54. https://doi.org/10.1111/febs.16255 PubMed DOI

Zhu P, Ke ZR, Chen JX, Li SJ, Ma TL, Fan XL (2023) Advances in mechanism and regulation of PANoptosis: prospects in disease treatment. Front Immunol 14:1120034. https://doi.org/10.3389/fimmu.2023.1120034 PubMed DOI PMC

Shan B, Pan H, Najafov A, Yuan J (2018) Necroptosis in development and diseases. Genes Dev 32:327–340. https://doi.org/10.1101/gad.312561.118 PubMed DOI PMC

Orzalli MH, Kagan JC (2017) Apoptosis and necroptosis as host defense strategies to prevent viral infection. Trends Cell Biol 27:800–809. https://doi.org/10.1016/j.tcb.2017.05.007 PubMed DOI PMC

Liu X, Xie X, Ren Y, Shao Z, Zhang N, Li L, Ding X, Zhang L (2020) The role of necroptosis in disease and treatment. MedComm 2:730–755. https://doi.org/10.1002/mco2.108 DOI

Choi ME, Price DR, Ryter SW, Choi AMK (2019) Necroptosis: a crucial pathogenic mediator of human disease. JCI Insight. https://doi.org/10.1172/jci.insight.128834 PubMed DOI PMC

Negroni A, Colantoni E, Cucchiara S, Stronati L (2020) Necroptosis in intestinal inflammation and cancer: new concepts and therapeutic perspectives. Biomolecules. https://doi.org/10.3390/biom10101431 PubMed DOI PMC

Gong Y, Fan Z, Luo G, Yang C, Huang Q, Fan K, Cheng H, Jin K, Ni Q, Yu X, Liu C (2019) The role of necroptosis in cancer biology and therapy. Mol Cancer 18:100. https://doi.org/10.1186/s12943-019-1029-8 PubMed DOI PMC

Su Z, Yang Z, Xie L, DeWitt JP, Chen Y (2016) Cancer therapy in the necroptosis era. Cell Death Differ 23:748–756. https://doi.org/10.1038/cdd.2016.8 PubMed DOI PMC

Wang T, Jin Y, Yang W, Zhang L, Jin X, Liu X, He Y, Li X (2017) Necroptosis in cancer: an angel or a demon? Tumour Biol 39:1010428317711539. https://doi.org/10.1177/1010428317711539 PubMed DOI

Wu Y, Dong G, Sheng C (2020) Targeting necroptosis in anticancer therapy: mechanisms and modulators. Acta Pharm Sin B 10:1601–1618. https://doi.org/10.1016/j.apsb.2020.01.007 PubMed DOI PMC

Della Torre L, Nebbioso A, Stunnenberg HG, Martens JHA, Carafa V, Altucci L (2021) The role of necroptosis: biological relevance and its involvement in cancer. Cancers 13:684 PubMed DOI PMC

Parker D, Prince A (2016) Immunoregulatory effects of necroptosis in bacterial infections. Cytokine 88:274–275. https://doi.org/10.1016/j.cyto.2016.09.024 PubMed DOI PMC

Ahn D, Prince A (2017) Participation of necroptosis in the host response to acute bacterial pneumonia. J Innate Immun 9:262–270. https://doi.org/10.1159/000455100 PubMed DOI PMC

Xia X, Lei L, Wang S, Hu J, Zhang G (2020) Necroptosis and its role in infectious diseases. Apoptosis 25:169–178. https://doi.org/10.1007/s10495-019-01589-x PubMed DOI

Zhang G, Wang J, Zhao Z, Xin T, Fan X, Shen Q, Raheem A, Lee CR, Jiang H, Ding J (2022) Regulated necrosis, a proinflammatory cell death, potentially counteracts pathogenic infections. Cell Death Dis 13:637. https://doi.org/10.1038/s41419-022-05066-3 PubMed DOI PMC

Turpin C, Catan A, Meilhac O, Bourdon E, Canonne-Hergaux F, Rondeau P (2021) Erythrocytes: central actors in multiple scenes of atherosclerosis. Int J Mol Sci. https://doi.org/10.3390/ijms22115843 PubMed DOI PMC

Lux SE (2016) Anatomy of the red cell membrane skeleton: unanswered questions. Blood 127:187–199. https://doi.org/10.1182/blood-2014-12-512772 PubMed DOI

Pretini V, Koenen MH, Kaestner L, Fens MHAM, Schiffelers RM, Bartels M, Van Wijk R (2019) Red blood cells: chasing interactions. Front Physiol. https://doi.org/10.3389/fphys.2019.00945 PubMed DOI PMC

Moras M, Lefevre SD, Ostuni MA (2017) From erythroblasts to mature red blood cells: organelle clearance in mammals. Front Physiol 8:1076. https://doi.org/10.3389/fphys.2017.01076 PubMed DOI PMC

McMahon TJ, Darrow CC, Hoehn BA, Zhu H (2021) Generation and export of red blood cell ATP in health and disease. Front Physiol. https://doi.org/10.3389/fphys.2021.754638 PubMed DOI PMC

Kerkelä E, Lahtela J, Larjo A, Impola U, Mäenpää L, Mattila P (2022) Exploring transcriptomic landscapes in red blood cells, in their extracellular vesicles and on a single-cell level. Int J Mol Sci 23:12897 PubMed DOI PMC

Sun L, Yu Y, Niu B, Wang D (2020) Red Blood cells as potential repositories of MicroRNAs in the circulatory system. Front Genet 11:442. https://doi.org/10.3389/fgene.2020.00442 PubMed DOI PMC

Kontidou E, Collado A, Pernow J, Zhou Z (2023) Erythrocyte-derived microRNAs: emerging players in cardiovascular and metabolic disease. Arterioscler Thromb Vasc Biol 43:628–636. https://doi.org/10.1161/atvbaha.123.319027 PubMed DOI

Ren Y, Yan C, Yang H (2023) Erythrocytes: member of the immune system that should not be ignored. Crit Rev Oncol Hematol 187:104039. https://doi.org/10.1016/j.critrevonc.2023.104039 PubMed DOI

Nielsen CH, Matthiesen SH, Lyng I, Leslie RG (1997) The role of complement receptor type 1 (CR1, CD35) in determining the cellular distribution of opsonized immune complexes between whole blood cells: kinetic analysis of the buffering capacity of erythrocytes. Immunology 90:129–137. https://doi.org/10.1046/j.1365-2567.1997.00138.x PubMed DOI PMC

Zhang Y, Liu Q, Yang S, Liao Q (2021) CD58 immunobiology at a glance. Front Immunol 12:705260. https://doi.org/10.3389/fimmu.2021.705260 PubMed DOI PMC

Novitzky-Basso I, Rot A (2012) Duffy antigen receptor for chemokines and its involvement in patterning and control of inflammatory chemokines. Front Immunol 3:266. https://doi.org/10.3389/fimmu.2012.00266 PubMed DOI PMC

Lam LKM, Murphy S, Kokkinaki D, Venosa A, Sherrill-Mix S, Casu C, Rivella S, Weiner A, Park J, Shin S, Vaughan AE, Hahn BH, Odom John AR, Meyer NJ, Hunter CA, Worthen GS, Mangalmurti NS (2021) DNA binding to TLR9 expressed by red blood cells promotes innate immune activation and anemia. Sci Transl Med 13:eabj1008. https://doi.org/10.1126/scitranslmed.abj1008 PubMed DOI PMC

Minton K (2021) Red blood cells join the ranks as immune sentinels. Nat Rev Immunol 21:760–761. https://doi.org/10.1038/s41577-021-00648-2 PubMed DOI PMC

Korns D, Frasch S, Fernandez-Boyanapalli R, Henson P, Bratton D (2011) Modulation of macrophage efferocytosis in inflammation. Front Immunol. https://doi.org/10.3389/fimmu.2011.00057 PubMed DOI PMC

Doran AC, Yurdagul A, Tabas I (2020) Efferocytosis in health and disease. Nat Rev Immunol 20:254–267. https://doi.org/10.1038/s41577-019-0240-6 PubMed DOI

Riera Romo M (2021) Cell death as part of innate immunity: cause or consequence? Immunology 163:399–415. https://doi.org/10.1111/imm.13325 PubMed DOI PMC

Burger P, de Korte D, van den Berg TK, van Bruggen R (2012) CD47 in erythrocyte ageing and clearance—the dutch point of view. Transfus Med Hemother 39:348–352. https://doi.org/10.1159/000342231 PubMed DOI PMC

Wang F, Liu YH, Zhang T, Gao J, Xu Y, Xie GY, Zhao WJ, Wang H, Yang YG (2020) Aging-associated changes in CD47 arrangement and interaction with thrombospondin-1 on red blood cells visualized by super-resolution imaging. Aging Cell 19:e13224. https://doi.org/10.1111/acel.13224 PubMed DOI PMC

Arashiki N, Takakuwa Y, Mohandas N, Hale J, Yoshida K, Ogura H, Utsugisawa T, Ohga S, Miyano S, Ogawa S, Kojima S, Kanno H (2016) ATP11C is a major flippase in human erythrocytes and its defect causes congenital hemolytic anemia. Haematologica 101:559–565. https://doi.org/10.3324/haematol.2016.142273 PubMed DOI PMC

Nagata S, Suzuki J, Segawa K, Fujii T (2016) Exposure of phosphatidylserine on the cell surface. Cell Death Differ 23:952–961. https://doi.org/10.1038/cdd.2016.7 PubMed DOI PMC

Bogdanova A, Lutz H (2013) Mechanisms tagging senescent red blood cells for clearance in healthy humans. Front Physiol. https://doi.org/10.3389/fphys.2013.00387 PubMed DOI PMC

Mohanty J, Nagababu E, Rifkind J (2014) Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front Physiol. https://doi.org/10.3389/fphys.2014.00084 PubMed DOI PMC

Huang C, Gao J, Wei T, Shen W (2022) Angiotensin II-induced erythrocyte senescence contributes to oxidative stress. Rejuvenation Res 25:30–38. https://doi.org/10.1089/rej.2021.0054 PubMed DOI

Nakashima K, Nishizaki O, Andoh Y (1993) Acceleration of hemoglobin glycation with aging. Clin Chim Acta 215:111–118. https://doi.org/10.1016/0009-8981(93)90254-2 PubMed DOI

Inaba M, Gupta KC, Kuwabara M, Takahashi T, Benz EJ Jr, Maede Y (1992) Deamidation of human erythrocyte protein 4.1: possible role in aging. Blood 79:3355–3361 PubMed DOI

Bosman GJ, Stappers M, Novotný VM (2010) Changes in band 3 structure as determinants of erythrocyte integrity during storage and survival after transfusion. Blood Transfus 8(Suppl 3):s48-52. https://doi.org/10.2450/2010.008s PubMed DOI PMC

Asaro RJ, Zhu Q, Cabrales P (2018) Erythrocyte aging, protection via vesiculation: an analysis methodology via oscillatory flow. Front Physiol 9:1607. https://doi.org/10.3389/fphys.2018.01607 PubMed DOI PMC

Ghashghaeinia M, Cluitmans JC, Akel A, Dreischer P, Toulany M, Köberle M, Skabytska Y, Saki M, Biedermann T, Duszenko M, Lang F, Wieder T, Bosman GJ (2012) The impact of erythrocyte age on eryptosis. Br J Haematol 157:606–614. https://doi.org/10.1111/j.1365-2141.2012.09100.x PubMed DOI

Repsold L, Joubert AM (2018) Eryptosis: an erythrocyte’s suicidal type of cell death. Biomed Res Int 2018:9405617. https://doi.org/10.1155/2018/9405617 PubMed DOI PMC

Lang E, Lang F (2015) Mechanisms and pathophysiological significance of eryptosis, the suicidal erythrocyte death. Semin Cell Dev Biol 39:35–42. https://doi.org/10.1016/j.semcdb.2015.01.009 PubMed DOI

Pyrshev KA, Klymchenko AS, Csúcs G, Demchenko AP (2018) Apoptosis and eryptosis: striking differences on biomembrane level. Biochimica et Biophysica Acta (BBA)—Biomembranes 1860:1362–1371. https://doi.org/10.1016/j.bbamem.2018.03.019 PubMed DOI

Dreischer P, Duszenko M, Stein J, Wieder T (2022) Eryptosis: programmed death of nucleus-free iron-filled blood cells. Cells 11:503 PubMed DOI PMC

Tkachenko A (2023) Apoptosis and eryptosis: similarities and differences. Apoptosis. https://doi.org/10.1007/s10495-023-01915-4 PubMed DOI

de Back D, Kostova E, van Kraaij M, van den Berg T, Van Bruggen R (2014) Of macrophages and red blood cells; a complex love story. Front Physiol. https://doi.org/10.3389/fphys.2014.00009 PubMed DOI PMC

Bozza MT, Jeney V (2020) Pro-inflammatory Actions of heme and other hemoglobin-derived DAMPs. Front Immunol. https://doi.org/10.3389/fimmu.2020.01323 PubMed DOI PMC

Mendonça R, Silveira AA, Conran N (2016) Red cell DAMPs and inflammation. Inflamm Res 65:665–678. https://doi.org/10.1007/s00011-016-0955-9 PubMed DOI

Jeney V (2018) Pro-Inflammatory Actions of red blood cell-derived DAMPs. Exp Suppl 108:211–233. https://doi.org/10.1007/978-3-319-89390-7_9 PubMed DOI

Fibach E, Rachmilewitz E (2008) The role of oxidative stress in hemolytic anemia. Curr Mol Med 8:609–619. https://doi.org/10.2174/156652408786241384 PubMed DOI

Regen SL (2021) Membrane-Disrupting molecules as therapeutic agents: a cautionary note. JACS Au 1:3–7. https://doi.org/10.1021/jacsau.0c00037 PubMed DOI

Baldwin C, Pandey J, Olarewaju O (2023) Hemolytic Anemia. StatPearls, StatPearls Publishing, St. Petersburg

LaRocca TJ, Stivison EA, Mal-Sarkar T, Hooven TA, Hod EA, Spitalnik SL, Ratner AJ (2015) CD59 signaling and membrane pores drive Syk-dependent erythrocyte necroptosis. Cell Death Dis 6:e1773. https://doi.org/10.1038/cddis.2015.135 PubMed DOI PMC

LaRocca TJ, Sosunov SA, Shakerley NL, Ten VS, Ratner AJ (2016) Hyperglycemic conditions prime cells for RIP1-dependent necroptosis. J Biol Chem 291:13753–13761. https://doi.org/10.1074/jbc.M116.716027 PubMed DOI PMC

McCaig WD, Hodges AL, Deragon MA, Haluska RJ Jr, Bandyopadhyay S, Ratner AJ, Spitalnik SL, Hod EA, LaRocca TJ (2019) Storage primes erythrocytes for necroptosis and clearance. Cell Physiol Biochem 53:496–507. https://doi.org/10.33594/000000153 PubMed DOI

Seo J, Kim Y, Ji S, Kim HB, Jung H, Yi EC, Lee YH, Shin I, Yang WH, Cho JW (2023) O-GlcNAcylation of RIPK1 rescues red blood cells from necroptosis. Front Immunol 14:1160490. https://doi.org/10.3389/fimmu.2023.1160490 PubMed DOI PMC

Gladwin MT, Ofori-Acquah SF (2014) Erythroid DAMPs drive inflammation in SCD. Blood 123:3689–3690. https://doi.org/10.1182/blood-2014-03-563874 PubMed DOI PMC

Erdei J, Tóth A, Balogh E, Nyakundi BB, Bányai E, Ryffel B, Paragh G, Cordero MD, Jeney V (2018) Induction of NLRP3 inflammasome activation by heme in human endothelial cells. Oxid Med Cell Longev 2018:4310816. https://doi.org/10.1155/2018/4310816 PubMed DOI PMC

Salgar S, Bolívar BE, Flanagan JM, Anum SJ, Bouchier-Hayes L (2023) The NLRP3 inflammasome fires up heme-induced inflammation in hemolytic conditions. Transl Res 252:34–44. https://doi.org/10.1016/j.trsl.2022.08.011 PubMed DOI

Chen G, Zhang D, Fuchs TA, Manwani D, Wagner DD, Frenette PS (2014) Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease. Blood 123:3818–3827. https://doi.org/10.1182/blood-2013-10-529982 PubMed DOI PMC

Karsten E, Breen E, Herbert BR (2018) Red blood cells are dynamic reservoirs of cytokines. Sci Rep 8:3101. https://doi.org/10.1038/s41598-018-21387-w PubMed DOI PMC

Xie J, Yao Y, Yang C, Liu W, Zhou X, Zhang M (2022) Erythrocyte immune system: beyond the gas transporter. Blood&Genomics. https://doi.org/10.46701/bg.2022012022009 PubMed DOI PMC

Kolosova IA, Mirzapoiazova T, Moreno-Vinasco L, Sammani S, Garcia JG, Verin AD (2008) Protective effect of purinergic agonist ATPgammaS against acute lung injury. Am J Physiol Lung Cell Mol Physiol 294:L319–L324. https://doi.org/10.1152/ajplung.00283.2007 PubMed DOI

Gibb DR, Calabro S, Liu D, Tormey CA, Spitalnik SL, Zimring JC, Hendrickson JE, Hod EA, Eisenbarth SC (2016) The Nlrp3 inflammasome does not regulate alloimmunization to transfused red blood cells in mice. EBioMedicine 9:77–86. https://doi.org/10.1016/j.ebiom.2016.06.008 PubMed DOI PMC

McMahon TJ, Darrow CC, Hoehn BA, Zhu H (2021) Generation and export of red blood cell ATP in health and disease. Front Physiol 12:754638. https://doi.org/10.3389/fphys.2021.754638 PubMed DOI PMC

Wei J, Zhao J, Schrott V, Zhang Y, Gladwin M, Bullock G, Zhao Y (2015) Red Blood cells store and release interleukin-33. J Investig Med 63:806–810. https://doi.org/10.1097/jim.0000000000000213 PubMed DOI PMC

Lu Y, Basatemur G, Scott IC, Chiarugi D, Clement M, Harrison J, Jugdaohsingh R, Yu X, Newland SA, Jolin HE, Li X, Chen X, Szymanska M, Haraldsen G, Palmer G, Fallon PG, Cohen ES, McKenzie ANJ, Mallat Z (2020) Interleukin-33 signaling controls the development of iron-recycling macrophages. Immunity 52:782-793.e5. https://doi.org/10.1016/j.immuni.2020.03.006 PubMed DOI PMC

Mathangasinghe Y, Fauvet B, Jane SM, Goloubinoff P, Nillegoda NB (2021) The Hsp70 chaperone system: distinct roles in erythrocyte formation and maintenance. Haematologica 106:1519–1534. https://doi.org/10.3324/haematol.2019.233056 PubMed DOI PMC

Olayanju AOD, Adeleke A, Okolo CS, Ogunyemi OO, Mary OK (2022) Association between haematological values and heat shock protein 70 of sickle cell disease patients in Ado-Ekiti, Ekiti State. Nigeria Pan Afr Med J 43:47. https://doi.org/10.11604/pamj.2022.43.47.33346 PubMed DOI

Hulina A, Grdić Rajković M, Jakšić Despot D, Jelić D, Dojder A, Čepelak I, Rumora L (2018) Extracellular Hsp70 induces inflammation and modulates LPS/LTA-stimulated inflammatory response in THP-1 cells. Cell Stress Chaperones 23:373–384. https://doi.org/10.1007/s12192-017-0847-0 PubMed DOI

Tukaj S (2020) Heat shock protein 70 as a double agent acting inside and outside the cell: insights into autoimmunity. Int J Mol Sci 21:5298 PubMed DOI PMC

Rarick KR, Pritchard KA (2021) The sickle erythrocyte yields another DAMP. Blood 137:3010–3011. https://doi.org/10.1182/blood.2021011143 PubMed DOI

Tumburu L, Ghosh-Choudhary S, Seifuddin FT, Barbu EA, Yang S, Ahmad MM, Wilkins LHW, Tunc I, Sivakumar I, Nichols JS, Dagur PK, Yang S, Almeida LEF, Quezado ZMN, Combs CA, Lindberg E, Bleck CKE, Zhu J, Shet AS, Chung JH, Pirooznia M, Thein SL (2021) Circulating mitochondrial DNA is a proinflammatory DAMP in sickle cell disease. Blood 137:3116–3126. https://doi.org/10.1182/blood.2020009063 PubMed DOI PMC

Helms CC, Marvel M, Zhao W, Stahle M, Vest R, Kato GJ, Lee JS, Christ G, Gladwin MT, Hantgan RR, Kim-Shapiro DB (2013) Mechanisms of hemolysis-associated platelet activation. J Thromb Haemost 11:2148–2154. https://doi.org/10.1111/jth.12422 PubMed DOI PMC

Dutra FF, Bozza MT (2014) Heme on innate immunity and inflammation. Front Pharmacol 5:115. https://doi.org/10.3389/fphar.2014.00115 PubMed DOI PMC

Rapido F (2017) The potential adverse effects of haemolysis. Blood Transfus 15:218–221. https://doi.org/10.2450/2017.0311-16 PubMed DOI PMC

Yatim N, Cullen S, Albert ML (2017) Dying cells actively regulate adaptive immune responses. Nat Rev Immunol 17:262–275. https://doi.org/10.1038/nri.2017.9 PubMed DOI

Birmpilis AI, Paschalis A, Mourkakis A, Christodoulou P, Kostopoulos IV, Antimissari E, Terzoudi G, Georgakilas AG, Armpilia C, Papageorgis P, Kastritis E, Terpos E, Dimopoulos MA, Kalbacher H, Livaniou E, Christodoulou MI, Tsitsilonis OE (2022) Immunogenic cell death, DAMPs and prothymosin α as a putative anticancer immune response biomarker. Cells. https://doi.org/10.3390/cells11091415 PubMed DOI PMC

Greenberg ME, Sun M, Zhang R, Febbraio M, Silverstein R, Hazen SL (2006) Oxidized phosphatidylserine-CD36 interactions play an essential role in macrophage-dependent phagocytosis of apoptotic cells. J Exp Med 203:2613–2625. https://doi.org/10.1084/jem.20060370 PubMed DOI PMC

Scovino AM, Totino PRR, Morrot A (2022) Eryptosis as a new insight in malaria pathogenesis. Front Immunol. https://doi.org/10.3389/fimmu.2022.855795 PubMed DOI PMC

Dias GF, Grobe N, Rogg S, Jörg DJ, Pecoits-Filho R, Moreno-Amaral AN, Kotanko P (2020) The role of eryptosis in the pathogenesis of renal anemia: insights from basic research and mathematical modeling. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2020.598148 PubMed DOI PMC

Chang CF, Goods BA, Askenase MH, Hammond MD, Renfroe SC, Steinschneider AF, Landreneau MJ, Ai Y, Beatty HE, da Costa LHA, Mack M, Sheth KN, Greer DM, Huttner A, Coman D, Hyder F, Ghosh S, Rothlin CV, Love JC, Sansing LH (2018) Erythrocyte efferocytosis modulates macrophages towards recovery after intracerebral hemorrhage. J Clin Invest 128:607–624. https://doi.org/10.1172/jci95612 PubMed DOI

Fang M, Xia F, Chen Y, Shen Y, Ma L, You C, Tao C, Hu X (2022) Role of eryptosis in hemorrhagic stroke. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2022.932931 PubMed DOI PMC

Catanzaro E, Feron O, Skirtach AG, Krysko DV (2022) Immunogenic Cell Death and role of nanomaterials serving as therapeutic vaccine for personalized cancer immunotherapy. Front Immunol 13:925290. https://doi.org/10.3389/fimmu.2022.925290 PubMed DOI PMC

Bissinger R, Bouguerra G, Al Mamun Bhuyan A, Waibel S, Abbès S, Lang F (2015) Efavirenz Induced suicidal death of human erythrocytes. Cell Physiol Biochem 37:2496–2507. https://doi.org/10.1159/000438602 PubMed DOI

Mischitelli M, Jemaà M, Almasry M, Faggio C, Lang F (2016) Stimulation of erythrocyte cell membrane scrambling by quinine. Cell Physiol Biochem 40:657–667. https://doi.org/10.1159/000452578 PubMed DOI

Jemaà M, Mischitelli M, Fezai M, Almasry M, Faggio C, Lang F (2016) Stimulation of suicidal erythrocyte death by the CDC25 inhibitor NSC-95397. Cell Physiol Biochem 40:597–607. https://doi.org/10.1159/000452573 PubMed DOI

Alfhili MA, Nkany MB, Weidner DA, Lee MH (2019) Stimulation of eryptosis by broad-spectrum insect repellent N, N-Diethyl-3-methylbenzamide (DEET). Toxicol Appl Pharmacol 370:36–43. https://doi.org/10.1016/j.taap.2019.03.011 PubMed DOI

Alfhili MA, Weidner DA, Lee MH (2019) Disruption of erythrocyte membrane asymmetry by triclosan is preceded by calcium dysregulation and p38 MAPK and RIP1 stimulation. Chemosphere 229:103–111. https://doi.org/10.1016/j.chemosphere.2019.04.211 PubMed DOI

Alamri HS, Alsughayyir J, Akiel M, Al-Sheikh YA, Basudan AM, Dera A, Barhoumi T, Basuwdan AM, Alfhili MA (2021) Stimulation of calcium influx and CK1α by NF-κB antagonist [6]-Gingerol reprograms red blood cell longevity. J Food Biochem 45:e13545. https://doi.org/10.1111/jfbc.13545 PubMed DOI

Alfhili MA, Alamri HS, Alsughayyir J, Basudan AM (2022) Induction of hemolysis and eryptosis by occupational pollutant nickel chloride is mediated through calcium influx and p38 MAP kinase signaling. Int J Occup Med Environ Health 35:1–11. https://doi.org/10.13075/ijomeh.1896.01814 PubMed DOI PMC

Alfhili MA, Basudan AM, Aljaser FS, Dera A, Alsughayyir J (2021) Bioymifi, a novel mimetic of TNF-related apoptosis-induced ligand (TRAIL), stimulates eryptosis. Med Oncol 38:138. https://doi.org/10.1007/s12032-021-01589-5 PubMed DOI

Freitas Leal JK, Preijers F, Brock R, Adjobo-Hermans M, Bosman G (2019) Red blood cell homeostasis and altered vesicle formation in patients with paroxysmal nocturnal hemoglobinuria. Front Physiol. https://doi.org/10.3389/fphys.2019.00578 PubMed DOI PMC

Gwamaka M, Fried M, Domingo G, Duffy PE (2011) Early and extensive CD55 loss from red blood cells supports a causal role in malarial anaemia. Malar J 10:386. https://doi.org/10.1186/1475-2875-10-386 PubMed DOI PMC

Waitumbi JN, Opollo MO, Muga RO, Misore AO, Stoute JA (2000) Red cell surface changes and erythrophagocytosis in children with severe plasmodium falciparum anemia. Blood 95:1481–1486 PubMed DOI

Waitumbi JN, Donvito B, Kisserli A, Cohen JHM, Stoute JA (2004) Age-related changes in red blood cell complement regulatory proteins and susceptibility to severe malaria. J Infect Dis 190:1183–1191. https://doi.org/10.1086/423140 PubMed DOI

Oyong DA, Loughland JR, SheelaNair A, Andrew D, Rivera FDL, Piera KA, William T, Grigg MJ, Barber BE, Haque A, Engwerda CR, McCarthy JS, Anstey NM, Boyle MJ (2019) Loss of complement regulatory proteins on red blood cells in mild malarial anaemia and in Plasmodium falciparum induced blood-stage infection. Malar J 18:312. https://doi.org/10.1186/s12936-019-2962-0 PubMed DOI PMC

Mahtout H, Curt S, Chandad F, Rouabhia M, Grenier D (2011) Effect of periodontopathogen lipopolysaccharides and proinflammatory cytokines on CD46, CD55, and CD59 gene/protein expression by oral epithelial cells. FEMS Immunol Med Microbiol 62:295–303. https://doi.org/10.1111/j.1574-695X.2011.00813.x PubMed DOI

Dammermann W, Schipper P, Ullrich S, Fraedrich K, Schulze Zur Wiesch J, Fründt T, Tiegs G, Lohse A, Lüth S (2013) Increased expression of complement regulators CD55 and CD59 on peripheral blood cells in patients with EAHEC O104:H4 infection. PloS one 8:e74880. https://doi.org/10.1371/journal.pone.0074880 PubMed DOI PMC

Antonelou MH, Kriebardis AG, Papassideri IS (2010) Aging and death signalling in mature red cells: from basic science to transfusion practice. Blood Transfus 8(Suppl 3):s39-47. https://doi.org/10.2450/2010.007s PubMed DOI PMC

Zhang Y, Su SS, Zhao S, Yang Z, Zhong CQ, Chen X, Cai Q, Yang ZH, Huang D, Wu R, Han J (2017) RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome. Nat Commun 8:14329. https://doi.org/10.1038/ncomms14329 PubMed DOI PMC

Deragon MA, McCaig WD, Patel PS, Haluska RJ, Hodges AL, Sosunov SA, Murphy MP, Ten VS, LaRocca TJ (2020) Mitochondrial ROS prime the hyperglycemic shift from apoptosis to necroptosis. Cell Death Discovery 6:132. https://doi.org/10.1038/s41420-020-00370-3 PubMed DOI PMC

Wei J, Chen L, Wang D, Tang L, Xie Z, Chen W, Zhang S, Weng G (2021) Upregulation of RIP3 promotes necroptosis via a ROS-dependent NF-κB pathway to induce chronic inflammation in HK-2 cells. Mol Med Rep. https://doi.org/10.3892/mmr.2021.12423 PubMed DOI PMC

Yang Z, Wang Y, Zhang Y, He X, Zhong C-Q, Ni H, Chen X, Liang Y, Wu J, Zhao S, Zhou D, Han J (2018) RIP3 targets pyruvate dehydrogenase complex to increase aerobic respiration in TNF-induced necroptosis. Nat Cell Biol 20:186–197. https://doi.org/10.1038/s41556-017-0022-y PubMed DOI

Chu Q, Gu X, Zheng Q, Wang J, Zhu H (2021) Mitochondrial Mechanisms of apoptosis and necroptosis in liver diseases. Anal Cell Pathol (Amst) 2021:8900122. https://doi.org/10.1155/2021/8900122 PubMed DOI

Kim S, Lee H, Lim JW, Kim H (2021) Astaxanthin induces NADPH oxidase activation and receptor-interacting protein kinase 1-mediated necroptosis in gastric cancer AGS cells. Mol Med Rep. https://doi.org/10.3892/mmr.2021.12477 PubMed DOI PMC

Alu A, Han X, Ma X, Wu M, Wei Y, Wei X (2020) The role of lysosome in regulated necrosis. Acta Pharm Sin B 10:1880–1903. https://doi.org/10.1016/j.apsb.2020.07.003 PubMed DOI PMC

Faizan MI, Ahmad T (2021) Altered mitochondrial calcium handling and cell death by necroptosis: an emerging paradigm. Mitochondrion 57:47–62. https://doi.org/10.1016/j.mito.2020.12.004 PubMed DOI

Dhaouadi N, Vitto VAM, Pinton P, Galluzzi L, Marchi S (2023) Ca2+ signaling and cell death. Cell Calcium 113:102759. https://doi.org/10.1016/j.ceca.2023.102759 PubMed DOI

Vanden Berghe T, Kaiser WJ, Bertrand MJ, Vandenabeele P (2015) Molecular crosstalk between apoptosis, necroptosis, and survival signaling. Mol Cell Oncol 2:e975093. https://doi.org/10.4161/23723556.2014.975093 PubMed DOI PMC

Ning B, Guo C, Kong A, Li K, Xie Y, Shi H, Gu J (2021) Calcium signaling mediates cell death and crosstalk with autophagy in kidney disease. Cells. https://doi.org/10.3390/cells10113204 PubMed DOI PMC

Zhang X, Matsuda M, Yaegashi N, Nabe T, Kitatani K (2020) Regulation of necroptosis by phospholipids and sphingolipids. Cells 9:627 PubMed DOI PMC

Thornton C, Hagberg H (2015) Role of mitochondria in apoptotic and necroptotic cell death in the developing brain. Clin Chim Acta 451:35–38. https://doi.org/10.1016/j.cca.2015.01.026 PubMed DOI PMC

Kavčič N, Pegan K, Turk B (2017) Lysosomes in programmed cell death pathways: from initiators to amplifiers. Biol Chem 398:289–301. https://doi.org/10.1515/hsz-2016-0252 PubMed DOI

Zhu SY, Yao RQ, Li YX, Zhao PY, Ren C, Du XH, Yao YM (2020) Lysosomal quality control of cell fate: a novel therapeutic target for human diseases. Cell Death Dis 11:817. https://doi.org/10.1038/s41419-020-03032-5 PubMed DOI PMC

Nano M, Mondo JA, Harwood J, Balasanyan V, Montell DJ (2023) Cell survival following direct executioner-caspase activation. Proc Natl Acad Sci USA 120:e2216531120. https://doi.org/10.1073/pnas.2216531120 PubMed DOI PMC

Sukumaran P, Nascimento Da Conceicao V, Sun Y, Ahamad N, Saraiva LR, Selvaraj S, Singh BB (2021) Calcium signaling regulates autophagy and apoptosis. Cells. https://doi.org/10.3390/cells10082125 PubMed DOI PMC

Green DR (2022) The mitochondrial pathway of apoptosis: part I: MOMP and beyond. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a041038 PubMed DOI PMC

Zhou M, Li Y, Hu Q, Bai XC, Huang W, Yan C, Scheres SH, Shi Y (2015) Atomic structure of the apoptosome: mechanism of cytochrome c- and dATP-mediated activation of Apaf-1. Genes Dev 29:2349–2361. https://doi.org/10.1101/gad.272278.115 PubMed DOI PMC

Dadsena S, Jenner A, García-Sáez AJ (2021) Mitochondrial outer membrane permeabilization at the single molecule level. Cell Mol Life Sci 78:3777–3790. https://doi.org/10.1007/s00018-021-03771-4 PubMed DOI PMC

Kalkavan H, Green DR (2018) MOMP, cell suicide as a BCL-2 family business. Cell Death Differ 25:46–55. https://doi.org/10.1038/cdd.2017.179 PubMed DOI

Oh S-J, Ikeda M, Ide T, Hur KY, Lee M-S (2022) Mitochondrial event as an ultimate step in ferroptosis. Cell Death Discovery 8:414. https://doi.org/10.1038/s41420-022-01199-8 PubMed DOI PMC

Tang D, Chen X, Kroemer G (2022) Cuproptosis: a copper-triggered modality of mitochondrial cell death. Cell Res 32:417–418. https://doi.org/10.1038/s41422-022-00653-7 PubMed DOI PMC

Tian C, Liu Y, Li Z, Zhu P, Zhao M (2022) Mitochondria related cell death modalities and disease. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2022.832356 PubMed DOI PMC

Zheng J, Kong C, Yang X, Cui X, Lin X, Zhang Z (2017) Protein kinase C-α (PKCα) modulates cell apoptosis by stimulating nuclear translocation of NF-kappa-B p65 in urothelial cell carcinoma of the bladder. BMC Cancer 17:432. https://doi.org/10.1186/s12885-017-3401-7 PubMed DOI PMC

Xu W, Huang Z, Gan Y, Chen R, Huang Y, Xue B, Jiang S, Yu Z, Yu K, Zhang S (2020) Casein kinase 1α inhibits p53 downstream of MDM2-mediated autophagy and apoptosis in acute myeloid leukemia. Oncol Rep 44:1895–1904. https://doi.org/10.3892/or.2020.7760 PubMed DOI PMC

Almasry M, Jemaà M, Mischitelli M, Faggio C, Lang F (2016) Stimulation of suicidal erythrocyte death by phosphatase inhibitor calyculin A. Cell Physiol Biochem 40:163–171. https://doi.org/10.1159/000452534 PubMed DOI

Villalpando-Rodriguez GE, Gibson SB (2021) Reactive oxygen species (ROS) Regulates different types of cell death by acting as a rheostat. Oxid Med Cell Longev 2021:9912436. https://doi.org/10.1155/2021/9912436 PubMed DOI PMC

Saddoughi SA, Ogretmen B (2013) Diverse functions of ceramide in cancer cell death and proliferation. Adv Cancer Res 117:37–58. https://doi.org/10.1016/b978-0-12-394274-6.00002-9 PubMed DOI

Dadsena S, Bockelmann S, Mina JGM, Hassan DG, Korneev S, Razzera G, Jahn H, Niekamp P, Müller D, Schneider M, Tafesse FG, Marrink SJ, Melo MN, Holthuis JCM (2019) Ceramides bind VDAC2 to trigger mitochondrial apoptosis. Nat Commun 10:1832. https://doi.org/10.1038/s41467-019-09654-4 PubMed DOI PMC

Nganga R, Oleinik N, Ogretmen B (2018) Chapter one—mechanisms of ceramide-dependent cancer cell death. In: Chalfant CE, Fisher PB (eds) Advances in Cancer Research. Academic Press, Cambridge, pp 1–25

Liu F, Zhang Y, Shi Y, Xiong K, Wang F, Yang J (2022) Ceramide induces pyroptosis through TXNIP/NLRP3/GSDMD pathway in HUVECs. BMC Mol Cell Biol 23:54. https://doi.org/10.1186/s12860-022-00459-w PubMed DOI PMC

Restivo I, Attanzio A, Giardina IC, Di Gaudio F, Tesoriere L, Allegra M (2022) Cigarette smoke extract induces p38 MAPK-initiated fas-mediated eryptosis. Int J Mol Sci. https://doi.org/10.3390/ijms232314730 PubMed DOI PMC

Restivo I, Attanzio A, Tesoriere L, Allegra M, Garcia-Llatas G, Cilla A (2023) A mixture of dietary plant sterols at nutritional relevant serum concentration inhibits extrinsic pathway of eryptosis induced by cigarette smoke extract. Int J Mol Sci 24:1264 PubMed DOI PMC

Heckmann BL, Tummers B, Green DR (2019) Crashing the computer: apoptosis vs. necroptosis in neuroinflammation. Cell Death Differ 26:41–52. https://doi.org/10.1038/s41418-018-0195-3 PubMed DOI

Kearney CJ, Martin SJ (2017) An inflammatory perspective on necroptosis. Mol Cell 65:965–973. https://doi.org/10.1016/j.molcel.2017.02.024 PubMed DOI

Degterev A, Ofengeim D, Yuan J (2019) Targeting RIPK1 for the treatment of human diseases. Proc Natl Acad Sci USA 116:9714–9722. https://doi.org/10.1073/pnas.1901179116 PubMed DOI PMC

Nakano H, Murai S, Moriwaki K (2022) Regulation of the release of damage-associated molecular patterns from necroptotic cells. Biochem J 479:677–685. https://doi.org/10.1042/bcj20210604 PubMed DOI

Deng L, Pan X, Wang Y, Wang L, Zhou XE, Li M, Feng Y, Wu Q, Wang B, Huang N (2009) Hemoglobin and its derived peptides may play a role in the antibacterial mechanism of the vagina. Hum Reprod 24:211–218. https://doi.org/10.1093/humrep/den318 PubMed DOI

Sheshadri P, Abraham J (2012) Antimicrobial properties of hemoglobin. Immunopharmacol Immunotoxicol 34:896–900. https://doi.org/10.3109/08923973.2012.692380 PubMed DOI

Bissinger R, Bhuyan AAM, Qadri SM, Lang F (2019) Oxidative stress, eryptosis and anemia: a pivotal mechanistic nexus in systemic diseases. FEBS J 286:826–854. https://doi.org/10.1111/febs.14606 PubMed DOI

Nemkov T, Reisz JA, Xia Y, Zimring JC, D’Alessandro A (2018) Red blood cells as an organ? How deep omics characterization of the most abundant cell in the human body highlights other systemic metabolic functions beyond oxygen transport. Expert Rev Proteomics 15:855–864. https://doi.org/10.1080/14789450.2018.1531710 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...