Cell death signaling in human erythron: erythrocytes lose the complexity of cell death machinery upon maturation
Language English Country Netherlands Media print-electronic
Document type Journal Article, Review
Grant support
EHA Ukraine Bridge Funding
European Hematology Association
DRO - VFN00064165
Ministerstvo Zdravotnictví Ceské Republiky
EXCELES - LX22NPO5102
National Institute for Cancer Research
Cooperatio Program, research area Biology
Ministry of Education, Youth, and Sports of the Czech Republic
PubMed
39924584
PubMed Central
PMC11947060
DOI
10.1007/s10495-025-02081-5
PII: 10.1007/s10495-025-02081-5
Knihovny.cz E-resources
- Keywords
- Apoptosis, Cell death, Ferroptosis, Necroptosis, Red blood cell,
- MeSH
- Apoptosis MeSH
- Cell Death MeSH
- Eryptosis * MeSH
- Erythrocytes * metabolism cytology MeSH
- Ferroptosis MeSH
- Humans MeSH
- Necroptosis MeSH
- Regulated Cell Death MeSH
- Signal Transduction * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Over the recent years, our understanding of the cell death machinery of mature erythrocytes has been greatly expanded. It resulted in the discovery of several regulated cell death (RCD) pathways in red blood cells. Apoptosis (eryptosis) and necroptosis of erythrocytes share certain features with their counterparts in nucleated cells, but they are also critically different in particular details. In this review article, we summarize the cell death subroutines in the erythroid precursors (apoptosis, necroptosis, and ferroptosis) in comparison to mature erythrocytes (eryptosis and erythronecroptosis) to highlight the consequences of organelle clearance and associated loss of multiple components of the cell death machinery upon erythrocyte maturation. Recent advances in understanding the role of erythrocyte RCDs in health and disease have expanded potential clinical applications of these lethal subroutines, emphasizing their contribution to the development of anemia, microthrombosis, and endothelial dysfunction, as well as their role as diagnostic biomarkers and markers of erythrocyte storage-induced lesions. Fas signaling and the functional caspase-8/caspase-3 system are not indispensable for eryptosis, but might be retained in mature erythrocytes to mediate the crosstalk between both erythrocyte-associated RCDs. The ability of erythrocytes to switch between eryptosis and necroptosis suggests that their cell death is not a simple unregulated mechanical disintegration, but a tightly controlled process. This allows investigation of eventual pharmacological interventions aimed at individual cell death subroutines of erythrocytes.
See more in PubMed
Koonin EV, Makarova KS, Wolf YI (2017) Evolutionary genomics of defense systems in Archaea and bacteria. Annu Rev Microbiol 71:233–261 PubMed PMC
Durand PM, Ramsey G (2023) The concepts and origins of cell mortality. Hist Philos Life Sci 45:23 PubMed PMC
Ameisen JC (2002) On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death Differ 9:367–393 PubMed
La SR, Ndhlovu A, Durand PM (2022) The ancient origins of death domains support the ‘original sin’ hypothesis for the evolution of programmed cell death. J Mol Evol 90:95–113 PubMed
Koonin EV, Krupovic M (2019) Origin of programmed cell death from antiviral defense? Proc Natl Acad Sci USA 116:16167–16169 PubMed PMC
Galluzzi L, Vitale I, Aaronson SA et al (2018) Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 25:486–541 PubMed PMC
Kist M, Vucic D (2021) Cell death pathways: intricate connections and disease implications. Embo J 40:e106700 PubMed PMC
Gullett JM, Tweedell RE, Kanneganti TD (2022) It’s all in the PAN: crosstalk, plasticity, redundancies, switches, and interconnectedness encompassed by PANoptosis underlying the totality of cell death-associated biological effects. Cells 11(9):1495 PubMed PMC
Guillemin A, Stumpf MPH (2021) Noise and the molecular processes underlying cell fate decision-making. Phys Biol 18:011002 PubMed
Mlynarczuk-Bialy I, Dziuba I, Sarnecka A et al (2020) Entosis: from cell biology to clinical cancer pathology. Cancers (Basel) 12(9):2481 PubMed PMC
Tan Y, Chen Q, Li X et al (2021) Pyroptosis: a new paradigm of cell death for fighting against cancer. J Experimental Clin Cancer Res 40:153 PubMed PMC
Boeltz S, Amini P, Anders HJ et al (2019) To NET or not to NET:current opinions and state of the science regarding the formation of neutrophil extracellular traps. Cell Death Differ 26:395–408 PubMed PMC
Repsold L, Joubert AM (2018) Eryptosis: an erythrocyte’s suicidal type of cell death. BioMed Res Int 2018(1):9405617 PubMed PMC
Corrons JLV, Casafont LB, Frasnedo EF (2021) Concise review: how do red blood cells born, live, and die? Ann Hematol 100:2425–2433 PubMed
Thiagarajan P, Parker CJ, Prchal JT (2021) How do red blood cells die? Front Physiol 12:655393 PubMed PMC
Tkachenko A, Onishchenko A (2023) Casein kinase 1α mediates eryptosis: a review. Apoptosis 28:1–19 PubMed
Tkachenko A, Havránek O (2023) Redox status of erythrocytes as an important factor in Eryptosis and Erythronecroptosis. Folia Biol (Praha) 69:116–126 PubMed
Tkachenko A, Havranek O (2024) Erythronecroptosis: an overview of necroptosis or programmed necrosis in red blood cells. Molecular and Cellular Biochemistry PubMed
Tkachenko A (2024) Apoptosis and eryptosis: similarities and differences. Apoptosis 29:482–502 PubMed
Galluzzi L, Bravo-San Pedro JM, Kroemer G (2014) Organelle-specific initiation of cell death. Nat Cell Biol 16:728–736 PubMed
Zivot A, Lipton JM, Narla A, Blanc L (2018) Erythropoiesis: insights into pathophysiology and treatments in 2017. Mol Med 24:11 PubMed PMC
Cazzola M (2022) Introduction to a review series on normal and pathologic erythropoiesis. Blood 139:2413–2414 PubMed
Nemkov T, Reisz JA, Xia Y, Zimring JC, D’Alessandro A (2018) Red blood cells as an organ? How deep omics characterization of the most abundant cell in the human body highlights other systemic metabolic functions beyond oxygen transport. Expert Rev Proteom 15:855–864 PubMed
Kuhn V, Diederich L, Keller TCSt et al (2017) Red blood cell function and dysfunction: redox regulation, nitric oxide metabolism, anemia. Antioxid Redox Signal 26:718–742 PubMed PMC
Gajecki D, Gawryś J, Szahidewicz-Krupska E, Doroszko A (2022) Role of erythrocytes in nitric oxide metabolism and paracrine regulation of endothelial function. Antioxid (Basel) 11(5):943 PubMed PMC
Xie J, Yao Y, Yang C, Liu W, Zhou X, Zhang M (2022) Erythrocyte immune system: beyond the gas transporter. Blood Genom 6(1):1–1
Ren Y, Yan C, Yang H (2023) Erythrocytes: member of the immune system that should not be ignored. Crit Rev Oncol/Hematol 187:104039 PubMed
Anderson HL, Brodsky IE, Mangalmurti NS (2018) The evolving erythrocyte: red blood cells as modulators of innate immunity. J Immunol 201:1343–1351 PubMed PMC
Singh RP, Grinenko T, Ramasz B et al (2018) Hematopoietic stem cells but not multipotent progenitors drive erythropoiesis during chronic erythroid stress in EPO transgenic mice. Stem Cell Rep 10:1908–1919 PubMed PMC
Mende N, Laurenti E (2021) Hematopoietic stem and progenitor cells outside the bone marrow: where, when, and why. Exp Hematol 104:9–16 PubMed
Dulmovits BM, Hom J, Narla A, Mohandas N, Blanc L (2017) Characterization, regulation, and targeting of erythroid progenitors in normal and disordered human erythropoiesis. Curr Opin Hematol 24:159–166 PubMed PMC
Xavier-Ferrucio J, Krause DS (2018) Concise review: bipotent Megakaryocytic-erythroid progenitors: concepts and controversies. Stem Cells 36:1138–1145 PubMed PMC
Weiskopf K, Schnorr PJ, Pang WW et al (2016) Myeloid cell origins, differentiation, and clinical implications. Microbiol Spectr 4 PubMed PMC
Lu YC, Sanada C, Xavier-Ferrucio J, Wang L, Zhang PX, Grimes HL, Venkatasubramanian M, Chetal K, Aronow B, Salomonis N, Krause DS (2018) The molecular signature of megakaryocyte-erythroid progenitors reveals a role for the cell cycle in fate specification. Cell Rep 25(8):2083–2093 PubMed PMC
Kwon N, Thompson EN, Mayday MY, Scanlon V, Lu YC, Krause DS (2021) Current understanding of human megakaryocytic-erythroid progenitors and their fate determinants. Curr Opin Hematol 28:28–35 PubMed PMC
Lodish H, Flygare J, Chou S (2010) From stem cell to erythroblast: regulation of red cell production at multiple levels by multiple hormones. IUBMB Life 62:492–496 PubMed PMC
Kadri Z, Lefevre C, Goupille O et al (2015) Erythropoietin and IGF-1 signaling synchronize cell proliferation and maturation during erythropoiesis. Genes Dev 29:2603–2616 PubMed PMC
Tan KS, Inoue T, Kulkeaw K, Tanaka Y, Lai MI, Sugiyama D (2015) Localized SCF and IGF-1 secretion enhances erythropoiesis in the spleen of murine embryos. Biol Open 4:596–607 PubMed PMC
Cooling L (2014) The RBC as a physiological object. In: McManus LM, Mitchell RN (eds) Pathobiology of Human Disease. Academic, San Diego, pp 3049–3067
Risør LM, Fenger M, Olsen NV, Møller S (2016) Hepatic erythropoietin response in cirrhosis. Scand J Clin Lab Invest 76:234–239 PubMed
Watowich SS (2011) The erythropoietin receptor: molecular structure and hematopoietic signaling pathways. J Investig Med 59:1067–1072 PubMed PMC
Kuhrt D, Wojchowski DM (2015) Emerging EPO and EPO receptor regulators and signal transducers. Blood 125:3536–3541 PubMed PMC
Zhao W, Kitidis C, Fleming MD, Lodish HF, Ghaffari S (2006) Erythropoietin stimulates phosphorylation and activation of GATA-1 via the PI3-kinase/AKT signaling pathway. Blood 107:907–915 PubMed PMC
Gutiérrez L, Caballero N, Fernández-Calleja L, Karkoulia E, Strouboulis J (2020) Regulation of GATA1 levels in erythropoiesis. IUBMB Life 72:89–105 PubMed
Hu J, Liu J, Xue F et al (2013) Isolation and functional characterization of human erythroblasts at distinct stages: implications for understanding of normal and disordered erythropoiesis in vivo. Blood 121:3246–3253 PubMed PMC
Manwani D, Bieker JJ (2008) The erythroblastic island. Curr Top Dev Biol 82:23–53 PubMed PMC
Li W, Guo R, Song Y, Jiang Z (2022) Corrigendum: Erythroblastic Island macrophages shape normal erythropoiesis and drive associated disorders in erythroid hematopoietic diseases. Front Cell Dev Biol 13(10):857022 PubMed PMC
Toda S, Segawa K, Nagata S (2014) MerTK-mediated engulfment of pyrenocytes by central macrophages in erythroblastic islands. Blood 123:3963–3971 PubMed
Lévesque J-P, Summers KM, Bisht K, Millard SM, Winkler IG, Pettit AR (2021) Macrophages form erythropoietic niches and regulate iron homeostasis to adapt erythropoiesis in response to infections and inflammation. Exp Hematol 103:1–14 PubMed
Keerthivasan G, Wickrema A, Crispino JD (2011) Erythroblast enucleation. Stem Cells Int 2011(1):139851 PubMed PMC
Moras M, Lefevre SD, Ostuni MA (2017) From erythroblasts to mature red blood cells: organelle clearance in mammals. Front Physiol 8:1076 PubMed PMC
Menon V, Ghaffari S (2021) Erythroid enucleation: a gateway into a bloody world. Exp Hematol 95:13–22 PubMed PMC
Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G (2019) The molecular machinery of regulated cell death. Cell Res 29:347–364 PubMed PMC
Tian C, Liu Y, Li Z, Zhu P, Zhao M (2022) Mitochondria related cell death modalities and disease. Front Cell Dev Biol 10:832356 PubMed PMC
Moras M, Hattab C, Gonzalez-Menendez P et al (2022) Human erythroid differentiation requires VDAC1-mediated mitochondrial clearance. Haematologica 107:167–177 PubMed PMC
Yang C, Hashimoto M, Lin QXX, Tan DQ, Suda T (2019) Sphingosine-1-phosphate signaling modulates terminal erythroid differentiation through the regulation of mitophagy. Exp Hematol 72:47–59e41 PubMed
Stolla MC, Reilly A, Bergantinos R et al (2022) ATG4A regulates human erythroid maturation and mitochondrial clearance. Blood Adv 6:3579–3589 PubMed PMC
Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, Dorsey FC, Kundu M, Opferman JT, Cleveland JL, Miller JL, Ney PA (2007) NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Nat Acad Sci USA 104(49):19500–19505 PubMed PMC
Sandoval H, Thiagarajan P, Dasgupta SK et al (2008) Essential role for Nix in autophagic maturation of erythroid cells. Nature 454:232–235 PubMed PMC
Jagadeeswaran R, Lenny H, Vazquez B et al (2017) The abnormal Presence of mitochondria in circulating red blood cells cause an increased oxygen consumption rate, ROS generation and hemolysis in patients with sickle cell disease. Blood 130:2237–2237 PubMed
Akhter MS, Hamali HA, Rashid H, Dobie G, Madkhali AM, Mobarki AA, Oldenburg J, Biswas A (2023) Mitochondria: emerging consequential in sickle cell disease. J Clin Med 12(3):765 PubMed PMC
Kavčič N, Pegan K, Turk B (2017) Lysosomes in programmed cell death pathways: from initiators to amplifiers. Biol Chem 398:289–301 PubMed
Zhu S-y, Yao R-q, Li Y-x et al (2020) Lysosomal quality control of cell fate: a novel therapeutic target for human diseases. Cell Death Dis 11:817 PubMed PMC
Mahapatra KK, Mishra SR, Behera BP, Patil S, Gewirtz DA, Bhutia SK (2021) The lysosome as an imperative regulator of autophagy and cell death. Cell Mol Life Sci 78:7435–7449 PubMed PMC
Betin VM, Singleton BK, Parsons SF, Anstee DJ, Lane JD (2013) Autophagy facilitates organelle clearance during differentiation of human erythroblasts: evidence for a role for ATG4 paralogs during autophagosome maturation. Autophagy 9:881–893 PubMed PMC
Liu Y, Mei Y, Han X et al (2021) Membrane skeleton modulates erythroid proteome remodeling and organelle clearance. Blood 137:398–409 PubMed PMC
Gallagher ER, Holzbaur ELF (2023) The selective autophagy adaptor p62/SQSTM1 forms phase condensates regulated by HSP27 that facilitate the clearance of damaged lysosomes via lysophagy. Cell Rep 42:112037 PubMed PMC
Stevens-Hernandez CJ, Flatt JF, Kupzig S, Bruce LJ (2022) Reticulocyte maturation and variant red blood cells. Front Physiol 13:834463 PubMed PMC
Du R, Bei H, Jia L et al (2020) A low-cost, accurate method for detecting reticulocytes at different maturation stages based on changes in the mitochondrial membrane potential. J Pharmacol Toxicol Methods 101:106664 PubMed
Mei Y, Liu Y, Ji P (2021) Understanding terminal erythropoiesis: an update on chromatin condensation, enucleation, and reticulocyte maturation. Blood Rev 46:100740 PubMed
Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257 PubMed PMC
Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516 PubMed PMC
Vitale I, Pietrocola F, Guilbaud E et al (2023) Apoptotic cell death in disease—current understanding of the NCCD 2023. Cell Death Differ 30:1097–1154 PubMed PMC
Juárez-Salcedo LM, Desai V, Dalia S (2019) Venetoclax: evidence to date and clinical potential. Drugs Context 8:212574 PubMed PMC
Jan R, Chaudhry GE (2019) Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv Pharm Bull 9:205–218 PubMed PMC
Lossi L (2022) The concept of intrinsic versus extrinsic apoptosis. Biochem J 479:357–384 PubMed
Walczak H (2013) Death receptor-ligand systems in cancer, cell death, and inflammation. Cold Spring Harb Perspect Biol 5:a008698 PubMed PMC
Ivanisenko NV, Seyrek K, Hillert-Richter LK et al (2022) Regulation of extrinsic apoptotic signaling by c-FLIP: towards targeting cancer networks. Trends Cancer 8:190–209 PubMed
Nosalova N, Keselakova A, Kello M, Martinkova M, Fabianova D, Pilatova MB (2023) Involvement of both extrinsic and intrinsic apoptotic pathways in Tridecylpyrrolidine-Diol Derivative-Induced apoptosis in Vitro. Int J Mol Sci 24:11696 PubMed PMC
Peña-Blanco A, García-Sáez AJ (2018) Bax, Bak and beyond - mitochondrial performance in apoptosis. Febs j 285:416–431 PubMed
Green DR (2022) The mitochondrial pathway of apoptosis: part I: MOMP and Beyond, vol 14. Cold Spring Harb Perspect Biol PubMed PMC
Kalkavan H, Green DR (2018) MOMP, cell suicide as a BCL-2 family business. Cell Death Differ 25:46–55 PubMed PMC
Redza-Dutordoir M, Averill-Bates DA (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochim et Biophys Acta (BBA) - Mol Cell Res 1863:2977–2992 PubMed
Luke CJ, Markovina S, Good M et al (2022) Lysoptosis is an evolutionarily conserved cell death pathway moderated by intracellular serpins. Commun Biology 5:47 PubMed PMC
Yu F, Chen Z, Wang B et al (2016) The role of lysosome in cell death regulation. Tumour Biol 37:1427–1436 PubMed
Repnik U, Turk B (2010) Lysosomal-mitochondrial cross-talk during cell death. Mitochondrion 10:662–669 PubMed
Fu X, Cui J, Meng X et al (2021) Endoplasmic reticulum stress, cell death and tumor: association between endoplasmic reticulum stress and the apoptosis pathway in tumors (review). Oncol Rep 45:801–808 PubMed PMC
Chen X, Shi C, He M, Xiong S, Xia X (2023) Endoplasmic reticulum stress: molecular mechanism and therapeutic targets. Signal Transduct Target Ther 8:352 PubMed PMC
Häcker G (2014) ER-stress and apoptosis: molecular mechanisms and potential relevance in infection. Microbes Infect 16:805–810 PubMed
Malhotra JD, Kaufman RJ (2011) ER stress and its functional link to mitochondria: role in cell survival and death. Cold Spring Harb Perspect Biol 3:a004424 PubMed PMC
Giamogante F, Poggio E, Barazzuol L, Covallero A, Calì T (2021) Apoptotic signals at the endoplasmic reticulum-mitochondria interface. Adv Protein Chem Struct Biol 126:307–343 PubMed
Hicks SW, Machamer CE (2005) Golgi structure in stress sensing and apoptosis. Biochimica et Biophysica Acta (BBA) -. Mol Cell Res 1744:406–414 PubMed
He Q, Liu H, Deng S et al (2020) The golgi Apparatus May be a potential therapeutic target for apoptosis-related neurological diseases. Front Cell Dev Biol 8:830 PubMed PMC
Prokhorova EA, Zamaraev AV, Kopeina GS, Zhivotovsky B, Lavrik IN (2015) Role of the nucleus in apoptosis: signaling and execution. Cell Mol Life Sci 72:4593–4612 PubMed PMC
Lindenboim L, Zohar H, Worman HJ, Stein R (2020) The nuclear envelope: target and mediator of the apoptotic process. Cell Death Discov 6:29 PubMed PMC
Testa U (2004) Apoptotic mechanisms in the control of erythropoiesis. Leukemia 18:1176–1199 PubMed
Sarvothaman S, Undi RB, Pasupuleti SR, Gutti U, Gutti RK (2015) Apoptosis: role in myeloid cell development. Blood Res 50:73–79 PubMed PMC
Raducka-Jaszul O, Bogusławska DM, Jędruchniewicz N, Sikorski AF (2020) Role of extrinsic apoptotic signaling pathway during definitive erythropoiesis in normal patients and in patients with β-Thalassemia. Int J Mol Sci 21(9):3325 PubMed PMC
Wensveen FM, Geest CR, Libregts SFWM et al (2013) BH3-only protein Noxa contributes to apoptotic control of stress-erythropoiesis. Apoptosis 18:1306–1318 PubMed PMC
Wang J, Tang ZY, Ka W et al (2007) Synergistic effect of cytokines EPO, IL-3 and SCF on the proliferation, differentiation and apoptosis of erythroid progenitor cells. Clin Hemorheol Microcirc 37:291–299 PubMed
Morceau F, Dicato M, Diederich M (2009) Pro-inflammatory cytokine-mediated anemia: regarding molecular mechanisms of erythropoiesis. Mediat inflamm 2009(1):405016 PubMed PMC
Caulier AL, Sankaran VG (2022) Molecular and cellular mechanisms that regulate human erythropoiesis. Blood 139:2450–2459 PubMed PMC
Tang P, Wang H (2023) Regulation of erythropoiesis: emerging concepts and therapeutic implications. Hematology 28:2250645 PubMed
Tóthová Z, Šemeláková M, Solárová Z, Tomc J, Debeljak N, Solár P (2021) The role of PI3K/AKT and MAPK signaling pathways in erythropoietin signalization. Int J Mol Sci 22(14):7682 PubMed PMC
Dolznig H, Habermann B, Stangl K et al (2002) Apoptosis protection by the Epo Target Bcl-XL allows factor-independent differentiation of primary erythroblasts. Curr Biol 12:1076–1085 PubMed
Ma R, Hu J, Huang C, Wang M, Xiang J, Li G (2014) JAK2/STAT5/Bcl-xL signalling is essential for erythropoietin-mediated protection against apoptosis induced in PC12 cells by the amyloid β-peptide Aβ25–35. Br J Pharmacol 171:3234–3245 PubMed PMC
Lamarque M, Gautier EF, Rodrigues F et al (2023) Role of caspase-10-P13tBID axis in erythropoiesis regulation. Cell Death Differ 30:208–220 PubMed PMC
Abutin RM, Chen J, Lung TK, Lloyd JA, Sawyer ST, Harada H (2009) Erythropoietin-induced phosphorylation/degradation of BIM contributes to survival of erythroid cells. Exp Hematol 37:151–158 PubMed PMC
Liu Y, Pop R, Sadegh C, Brugnara C, Haase VH, Socolovsky M (2006) Suppression of Fas-FasL coexpression by erythropoietin mediates erythroblast expansion during the erythropoietic stress response in vivo. Blood 108:123–133 PubMed PMC
Sui X, Krantz SB, Zhao ZJ (2000) Stem cell factor and erythropoietin inhibit apoptosis of human erythroid progenitor cells through different signalling pathways. Br J Haematol 110:63–70 PubMed
Nishio M, Oda A, Koizumi K et al (2001) Stem cell factor prevents Fas-mediated apoptosis of human erythroid precursor cells with src-family kinase dependency. Exp Hematol 29:19–29 PubMed
Secchiero P, Melloni E, Heikinheimo M et al (2004) TRAIL regulates normal erythroid maturation through an ERK-dependent pathway. Blood 103:517–522 PubMed
Delbridge AR, Aubrey BJ, Hyland C et al (2017) The BH3-only proteins BIM and PUMA are not critical for the reticulocyte apoptosis caused by loss of the pro-survival protein BCL-XL. Cell Death Dis 8:e2914 PubMed PMC
Gregoli PA, Bondurant MC (1997) The roles of Bcl-X(L) and apopain in the control of erythropoiesis by erythropoietin. Blood 90:630–640 PubMed
Koury MJ, Koury ST, Kopsombut P, Bondurant MC (2005) In vitro maturation of nascent reticulocytes to erythrocytes. Blood 105:2168–2174 PubMed
Diwan A, Koesters AG, Odley AM et al (2007) Unrestrained erythroblast development in Nix-/- mice reveals a mechanism for apoptotic modulation of erythropoiesis. Proc Natl Acad Sci USA 104:6794–6799 PubMed PMC
Lamarque M, Guillem F, Belaid Z, Hermine O, Courtois G (2016) BID cleavage pattern is a novel check-point that determines the fate of human erythroid progenitors (differentiation or apoptosis. Blood 128:397
Daugas E, Candé C, Kroemer G (2001) Erythrocytes: death of a mummy. Cell Death Differ 8:1131–1133 PubMed
Ribeil JA, Zermati Y, Vandekerckhove J et al (2007) Hsp70 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1. Nature 445:102–105 PubMed
Droin N, Cathelin S, Jacquel A et al (2008) A role for caspases in the differentiation of erythroid cells and macrophages. Biochimie 90:416–422 PubMed
Dev A, Byrne SM, Verma R, Ashton-Rickardt PG, Wojchowski DM (2013) Erythropoietin-directed erythropoiesis depends on serpin inhibition of erythroblast lysosomal cathepsins. J Exp Med 210:225–232 PubMed PMC
Walrafen P, Verdier F, Kadri Z, Chrétien S, Lacombe C, Mayeux P (2005) Both proteasomes and lysosomes degrade the activated erythropoietin receptor. Blood 105:600–608 PubMed
Gyan E, Frisan E, Beyne-Rauzy O et al (2008) Spontaneous and Fas-induced apoptosis of low-grade MDS erythroid precursors involves the endoplasmic reticulum. Leukemia 22:1864–1873 PubMed
Yang Q, Chen L, Zhang H et al (2024) DNMT1 regulates human erythropoiesis by modulating cell cycle and endoplasmic reticulum stress in a stage-specific manner. Cell Death Differ 31:999–1012 PubMed PMC
Gyan E, Frisan E, Deschemin J-C et al (2006) Both the endoplasmic reticulum and the mitochondria are involved in apoptosis of erythroid precursors in low grade Myelodysplastic syndromes. Blood 108:2638–2638
Peslak SA, Wenger J, Bemis JC et al (2011) Sublethal radiation injury uncovers a functional transition during erythroid maturation. Exp Hematol 39:434–445 PubMed PMC
Dhuriya YK, Sharma D (2018) Necroptosis: a regulated inflammatory mode of cell death. J Neuroinflamm 15:199 PubMed PMC
Ye K, Chen Z, Xu Y (2023) The double-edged functions of necroptosis. Cell Death Dis 14:163 PubMed PMC
Fritsch M, Günther SD, Schwarzer R et al (2019) Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature 575:683–687 PubMed
Roberts JZ, Crawford N, Longley DB (2022) The role of Ubiquitination in apoptosis and Necroptosis. Cell Death Differ 29:272–284 PubMed PMC
Choi ME, Price DR, Ryter SW, Choi AMK (2019) Necroptosis: a crucial pathogenic mediator of human disease. JCI Insight 4 PubMed PMC
Liu X, Xie X, Ren Y, Shao Z, Zhang N, Li L, Ding X, Zhang L (2021) The role of necroptosis in disease and treatment. MedComm 2(4):730–55 PubMed PMC
Chaouhan HS, Vinod C, Mahapatra N et al (2022) Necroptosis: a pathogenic negotiator in human diseases. Int J Mol Sci 23:12714 PubMed PMC
Wang P, Zheng SY, Jiang RL et al (2023) Necroptosis signaling and mitochondrial dysfunction cross-talking facilitate cell death mediated by chelerythrine in glioma. Free Radic Biol Med 202:76–96 PubMed
Tait Stephen WG, Oberst A, Quarato G et al (2013) Widespread mitochondrial depletion via Mitophagy does not compromise necroptosis. Cell Rep 5:878–885 PubMed PMC
Marshall KD, Baines CP (2014) Necroptosis: is there a role for mitochondria? Front Physiol 5:323 PubMed PMC
Yang Z, Wang Y, Zhang Y et al (2018) RIP3 targets pyruvate dehydrogenase complex to increase aerobic respiration in TNF-induced necroptosis. Nat Cell Biol 20:186–197 PubMed
Zhang S, Che L, He C et al (2019) Drp1 and RB interaction to mediate mitochondria-dependent necroptosis induced by cadmium in hepatocytes. Cell Death Dis 10:523 PubMed PMC
Xue C, Gu X, Li G, Bao Z, Li L (2020) Mitochondrial mechanisms of necroptosis in liver diseases. Int J Mol Sci 22(1):66 PubMed PMC
Chu Q, Gu X, Zheng Q, Wang J, Zhu H (2021) Mitochondrial mechanisms of apoptosis and necroptosis in liver diseases. Anal Cell Pathol 2021(1):8900122 PubMed PMC
Alu A, Han X, Ma X, Wu M, Wei Y, Wei X (2020) The role of lysosome in regulated necrosis. Acta Pharm Sin B 10:1880–1903 PubMed PMC
Liu S, Perez P, Sun X et al (2024) MLKL polymerization-induced lysosomal membrane permeabilization promotes necroptosis. Cell Death Differ 31:40–52 PubMed PMC
Saveljeva S, Mc Laughlin SL, Vandenabeele P, Samali A, Bertrand MJM (2015) Endoplasmic reticulum stress induces ligand-independent TNFR1-mediated necroptosis in L929 cells. Cell Death Dis 6:e1587–e1587 PubMed PMC
Kishino A, Hayashi K, Maeda M, Jike T, Hidai C, Nomura Y, Oshima T (2019) Caspase-8 regulates endoplasmic reticulum stress-induced necroptosis independent of the apoptosis pathway in auditory cells. Int J Mol Sci 20(23):5896 PubMed PMC
McGrath EP, Centonze FG, Chevet E, Avril T, Lafont E (2021) Death sentence: the tale of a fallen endoplasmic reticulum. Biochim et Biophys Acta (BBA) Mol Cell Res 1868:119001 PubMed
Han X, Li B, Bao J, Wu Z, Chen C, Ni J, Shen J, Song P, Peng Q, Wan R, Wang X (2022) Endoplasmic reticulum stress promoted acinar cell necroptosis in acute pancreatitis through cathepsinB-mediated AP-1 activation. Front Immunol 19(13):968639 PubMed PMC
Liang W, Qi W, Geng Y, Wang L, Zhao J, Zhu K, Wu G, Zhang Z, Pan H, Qian L, Yuan J (2021) Necroptosis activates UPR sensors without disrupting their binding with GRP78. Proce Nat Acad Sci USA 118(39):e2110476118 PubMed PMC
Samson AL, Zhang Y, Geoghegan ND et al (2020) MLKL trafficking and accumulation at the plasma membrane control the kinetics and threshold for necroptosis. Nat Commun 11:3151 PubMed PMC
Weber K, Roelandt R, Bruggeman I, Estornes Y, Vandenabeele P (2018) Nuclear RIPK3 and MLKL contribute to cytosolic necrosome formation and necroptosis. Commun Biology 1:6 PubMed PMC
Yoon S, Bogdanov K, Kovalenko A, Wallach D (2016) Necroptosis is preceded by nuclear translocation of the signaling proteins that induce it. Cell Death Differ 23:253–260 PubMed PMC
Ino S, Yano T, Kuno A et al (2023) Nuclear translocation of MLKL enhances necroptosis by a RIP1/RIP3-independent mechanism in H9c2 cardiomyoblasts. J Pharmacol Sci 151:134–143 PubMed
Roderick JE, Hermance N, Zelic M et al (2014) Hematopoietic RIPK1 deficiency results in bone marrow failure caused by apoptosis and RIPK3-mediated necroptosis. Proc Natl Acad Sci USA 111:14436–14441 PubMed PMC
Zhang L, Luo H, Ni HM et al (2022) Ripk3 signaling regulates HSCs during stress and represses radiation-induced leukemia in mice. Stem Cell Rep 17:1428–1441 PubMed PMC
Zhang L, Luo H, Li J et al (2019) Ripk3 Signaling regulates hematopoietic stem cell number and function during stress. Blood 134:3714–3714
Canli Ö, Alankuş YB, Grootjans S et al (2016) Glutathione peroxidase 4 prevents necroptosis in mouse erythroid precursors. Blood 127:139–148 PubMed PMC
Bruce LJ, Anstee DJ (2016) Unconventional cell death in erythroid cells. Blood 127:12–14 PubMed
Xie Y, Kang R, Klionsky DJ, Tang D (2023) GPX4 in cell death, autophagy, and disease. Autophagy 19:2621–2638 PubMed PMC
Wagner PN, Shi Q, Salisbury-Ruf CT et al (2019) Increased Ripk1-mediated bone marrow necroptosis leads to myelodysplasia and bone marrow failure in mice. Blood 133:107–120 PubMed PMC
Chen Z, Wang W, Abdul Razak SR, Han T, Ahmad NH, Li X (2023) Ferroptosis as a potential target for cancer therapy. Cell Death Dis 14:460 PubMed PMC
Dixon SJ, Olzmann JA (2024) The cell biology of ferroptosis. Nature Reviews Molecular Cell Biology PubMed
Stockwell BR (2022) Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 185:2401–2421 PubMed PMC
Liu Ye, Lu S, Wu L-l, Yang L, Yang L, Wang J (2023) The diversified role of mitochondria in ferroptosis in cancer. Cell Death Dis 14:519 PubMed PMC
Huang L, Feng J, Zhu J et al (2023) A strategy of fenton reaction cycloacceleration for high-performance ferroptosis therapy initiated by tumor microenvironment remodeling. Adv Healthc Mater 12:e2203362 PubMed
Yang WS (2023) Ferroptosis: whERe is the critical site of lipid peroxidation? Frontiers in Cell and Developmental Biology 11 PubMed PMC
Cheng X, Zhang J, Xiao Y, Wang Z, He J, Ke M, Liu S, Wang Q, Zhang L (2023) Mitochondrial regulation of ferroptosis in cancer therapy. Int J Mol Sci 24(12):10037 PubMed PMC
Gao M, Yi J, Zhu J et al (2019) Role of mitochondria in ferroptosis. Mol Cell 73:354-363e353 PubMed PMC
Tang D, Chen X, Kang R, Kroemer G (2021) Ferroptosis: molecular mechanisms and health implications. Cell Res 31:107–125 PubMed PMC
Gao H, Bai Y, Jia Y et al (2018) Ferroptosis is a lysosomal cell death process. Biochem Biophys Res Commun 503:1550–1556 PubMed
Wang Z (2023) Lysosomal cystine controls ferroptosis in cancer. Nat Cell Biol 25:1405–1405 PubMed
Alborzinia H, Ignashkova TI, Dejure FR et al (2018) Golgi stress mediates redox imbalance and ferroptosis in human cells. Commun Biol 1:210 PubMed PMC
Chen X, Kang R, Kroemer G, Tang D (2021) Organelle-specific regulation of ferroptosis. Cell Death Differ 28:2843–2856 PubMed PMC
Wu P, Zhang X, Duan D, Zhao L (2023) Organelle-specific mechanisms in crosstalk between apoptosis and ferroptosis. Oxid Med Cell Longev 2023(1):3400147 PubMed PMC
Zheng H, Jiang L, Tsuduki T, Conrad M, Toyokuni S (2021) Embryonal erythropoiesis and aging exploit ferroptosis. Redox Biol 48:102175 PubMed PMC
Zhao J, Jia Y, Mahmut D et al (2023) Human hematopoietic stem cell vulnerability to ferroptosis. Cell 186:732–747e716 PubMed PMC
Hu Q, Zhang Y, Lou H et al (2021) GPX4 and vitamin E cooperatively protect hematopoietic stem and progenitor cells from lipid peroxidation and ferroptosis. Cell Death Dis 12:706 PubMed PMC
Liu C, Liao W, Chen J et al (2023) Cholesterol confers ferroptosis resistance onto myeloid-biased hematopoietic stem cells and prevents irradiation-induced myelosuppression. Redox Biol 62:102661 PubMed PMC
Song B, Miao W, Cui Q et al (2022) Inhibition of ferroptosis promotes megakaryocyte differentiation and platelet production. J Cell Mol Med 26:3582–3585 PubMed PMC
Ouled-Haddou H, Messaoudi K, Demont Y et al (2020) A new role of glutathione peroxidase 4 during human erythroblast enucleation. Blood Adv 4:5666–5680 PubMed PMC
Altamura S, Vegi NM, Hoppe PS et al (2020) Glutathione peroxidase 4 and vitamin E control reticulocyte maturation, stress erythropoiesis and iron homeostasis. Haematologica 105:937–950 PubMed PMC
Lin S, Zheng Y, Chen M, Xu L, Huang H (2024) The interactions between ineffective erythropoiesis and ferroptosis in β-thalassemia. Front Physiol 15:1346173 PubMed PMC
Bratosin D, Estaquier J, Petit F et al (2001) Programmed cell death in mature erythrocytes: a model for investigating death effector pathways operating in the absence of mitochondria. Cell Death Differ 8:1143–1156 PubMed
Berg CP, Engels IH, Rothbart A et al (2001) Human mature red blood cells express caspase-3 and caspase-8, but are devoid of mitochondrial regulators of apoptosis. Cell Death Differ 8:1197–1206 PubMed
Holcik M (2002) Do mature red blood cells die by apoptosis. Trends Genet 18:121
Lang KS, Duranton C, Poehlmann H et al (2003) Cation channels trigger apoptotic death of erythrocytes. Cell Death Differ 10:249–256 PubMed
Lang KS, Lang PA, Bauer C et al (2005) Mechanisms of suicidal erythrocyte death. Cell Physiol Biochem 15:195–202 PubMed
Bigdelou P, Farnoud AM (2020) Induction of Eryptosis in Red Blood cells using a Calcium Ionophore. J Vis Exp PubMed PMC
Föller M, Lang F (2020) Ion transport in Eryptosis, the suicidal death of Erythrocytes. Front Cell Dev Biol 8:597 PubMed PMC
Lang F, Lang KS, Lang PA, Huber SM, Wieder T (2006) Mechanisms and significance of eryptosis. Antioxid Redox Signal 8:1183–1192 PubMed
Walsh M, Lutz RJ, Cotter TG, O’Connor R (2002) Erythrocyte survival is promoted by plasma and suppressed by a bak-derived BH3 peptide that interacts with membrane-associated Bcl-X(L). Blood 99:3439–3448 PubMed
Shamas-Din A, Brahmbhatt H, Leber B, Andrews DW (2011) BH3-only proteins: orchestrators of apoptosis. Biochim et Biophys Acta (BBA) Mol Cell Res 1813:508–520 PubMed
Mandal D, Mazumder A, Das P, Kundu M, Basu J (2005) Fas-, caspase 8-, and caspase 3-dependent signaling regulates the activity of the aminophospholipid translocase and phosphatidylserine externalization in human erythrocytes. J Biol Chem 280:39460–39467 PubMed
Sagan D, Jermnim N, Tangvarasittichai O (2010) CD95 is not functional in human erythrocytes. Int J Lab Hematol 32:e244–247 PubMed
Biswas D, Sen G, Sarkar A, Biswas T (2011) Atorvastatin acts synergistically with N-acetyl cysteine to provide therapeutic advantage against Fas-activated erythrocyte apoptosis during chronic arsenic exposure in rats. Toxicol Appl Pharmacol 250:39–53 PubMed
Restivo I, Attanzio A, Giardina IC, Di Gaudio F, Tesoriere L, Allegra M (2022) Cigarette smoke extract induces p38 MAPK-initiated, Fas-mediated Eryptosis. Int J Mol Sci 23(23):14730 PubMed PMC
Restivo I, Attanzio A, Tesoriere L, Allegra M, Garcia-Llatas G, Cilla A (2023) A mixture of dietary plant sterols at nutritional relevant serum concentration inhibits extrinsic pathway of eryptosis induced by cigarette smoke extract. Int J Mol Sci 24(2):1264 PubMed PMC
Restivo I, Giardina IC, Barone R et al (2024) Indicaxanthin prevents eryptosis induced by cigarette smoke extract by interfering with active Fas-mediated signaling. Biofactors PubMed
Morgan MJ, Kim Y-S (2022) Roles of RIPK3 in necroptosis, cell signaling, and disease. Exp Mol Med 54:1695–1704 PubMed PMC
LaRocca TJ, Stivison EA, Hod EA et al (2014) Human-specific bacterial pore-forming toxins induce programmed necrosis in erythrocytes. mBio 5:e01251–e01214 PubMed PMC
LaRocca TJ, Stivison EA, Mal-Sarkar T et al (2015) CD59 signaling and membrane pores drive syk-dependent erythrocyte necroptosis. Cell Death Dis 6:e1773 PubMed PMC
LaRocca TJ, Sosunov SA, Shakerley NL, Ten VS, Ratner AJ (2016) Hyperglycemic conditions prime cells for RIP1-dependent necroptosis. J Biol Chem 291:13753–13761 PubMed PMC
McCaig WD, Hodges AL, Deragon MA et al (2019) Storage primes erythrocytes for necroptosis and clearance. Cell Physiol Biochem 53:496–507 PubMed PMC
Bissinger R, Bouguerra G, Al Mamun Bhuyan A, Waibel S, Abbès S, Lang F (2015) Efavirenz induced suicidal death of human erythrocytes. Cell Physiol Biochem 37:2496–2507 PubMed
Jemaà M, Mischitelli M, Fezai M, Almasry M, Faggio C, Lang F (2016) Stimulation of suicidal erythrocyte death by the CDC25 inhibitor NSC-95397. Cell Physiol Biochem 40:597–607 PubMed
Alfhili MA, Nkany MB, Weidner DA, Lee MH (2019) Stimulation of eryptosis by broad-spectrum insect repellent N,N-Diethyl-3-methylbenzamide (DEET). Toxicol Appl Pharmacol 370:36–43 PubMed
Alamri HS, Alsughayyir J, Akiel M et al (2021) Stimulation of calcium influx and CK1α by NF-κB antagonist [6]-Gingerol reprograms red blood cell longevity. J Food Biochem 45:e13545 PubMed
Alfhili MA, Basudan AM, Aljaser FS, Dera A, Alsughayyir J (2021) Bioymifi, a novel mimetic of TNF-related apoptosis-induced ligand (TRAIL), stimulates eryptosis. Med Oncol 38:138 PubMed
Alfhili MA, Alamri HS, Alsughayyir J, Basudan AM (2022) Induction of hemolysis and eryptosis by occupational pollutant nickel chloride is mediated through calcium influx and p38 MAP kinase signaling. Int J Occup Med Environ Health 35:1–11 PubMed PMC
Alfhili MA, Weidner DA, Lee MH (2019) Disruption of erythrocyte membrane asymmetry by triclosan is preceded by calcium dysregulation and p38 MAPK and RIP1 stimulation. Chemosphere 229:103–111 PubMed
Newton K, Wickliffe KE, Maltzman A et al (2019) Activity of caspase-8 determines plasticity between cell death pathways. Nature 575:679–682 PubMed
Villalpando-Rodriguez GE, Gibson SB (2021) Reactive oxygen species (ROS) regulates different types of cell death by acting as a rheostat. Oxid Med Cell Longev 2021(1):9912436 PubMed PMC
Riegger J, Schoppa A, Ruths L, Haffner-Luntzer M, Ignatius A (2023) Oxidative stress as a key modulator of cell fate decision in osteoarthritis and osteoporosis: a narrative review. Cell Mol Biol Lett 28:76 PubMed PMC
Deragon MA, McCaig WD, Patel PS et al (2020) Mitochondrial ROS prime the hyperglycemic shift from apoptosis to necroptosis. Cell Death Discov 6:132 PubMed PMC
Dreischer P, Duszenko M, Stein J, Wieder T (2022) Eryptosis: programmed death of nucleus-free, iron-filled blood cells. Cells 11(3):503 PubMed PMC
Ganz T (2018) Erythrocytes and erythroblasts give up iron. Blood 132:2004–2005 PubMed
Baird L, Yamamoto M (2020) The Molecular mechanisms regulating the KEAP1-NRF2 pathway. Mol Cell Biol 40 PubMed PMC
Pedrera L, Ros U, García-Sáez AJ (2023) Calcium as a master regulator of ferroptosis and other types of regulated necrosis. Cell Calcium 114:102778 PubMed
Chen X, Comish PB, Tang D, Kang R (2021) Characteristics and biomarkers of ferroptosis. Front Cell Dev Biol 21(9):637162 PubMed PMC
Stolwijk JM, Stefely JA, Veling MT et al (2021) Red blood cells contain enzymatically active GPx4 whose abundance anticorrelates with hemolysis during blood bank storage. Redox Biol 46:102073 PubMed PMC
Kozlova E, Sherstyukova E, Sergunova V, Kozlov A, Gudkova O, Inozemtsev V, Chernysh A (2022) The toxic influence of excess free iron on red blood cells in the biophysical experiment: an in vitro study. J Toxicol 2022(1):7113958 PubMed PMC
Tkachenko A (2024) Hemocompatibility studies in nanotoxicology: hemolysis or eryptosis? (a review). Toxicol Vitro 98:105814 PubMed
Moore A, Busch MP, Dziewulska K et al (2022) Genome-wide metabolite quantitative trait loci analysis (mQTL) in red blood cells from volunteer blood donors. J Biol Chem 298:102706 PubMed PMC
Feng H, Schorpp K, Jin J et al (2020) Transferrin receptor is a specific ferroptosis marker. Cell Rep 30:3411–3423e3417 PubMed PMC
Gruszczyk J, Kanjee U, Chan LJ et al (2018) Transferrin receptor 1 is a reticulocyte-specific receptor for Plasmodium Vivax. Science 359:48–55 PubMed PMC
Tran LN, González-Fernández C, Gomez-Pastora J (2024) Impact of different red blood cell storage solutions and conditions on cell function and viability: a systematic review. Biomolecules 14(7):813 PubMed PMC
Isiksacan Z, William N, Senturk R et al (2024) Extended supercooled storage of red blood cells. Commun Biol 7:765 PubMed PMC
Lang E, Pozdeev VI, Xu HC et al (2016) Storage of erythrocytes induces suicidal erythrocyte death. Cell Physiol Biochem 39:668–676 PubMed
Scovino AM, Totino PR, Morrot A (2022) Eryptosis as a new insight in malaria pathogenesis. Front Immunol 13(13):855795 PubMed PMC
Totino PR, Daniel-Ribeiro CT, Ferreira-da-Cruz Mde F (2011) Refractoriness of eryptotic red blood cells to Plasmodium falciparum infection: a putative host defense mechanism limiting parasitaemia. PLoS ONE 6:e26575 PubMed PMC
Eda S, Sherman IW (2002) Cytoadherence of malaria-infected red blood cells involves exposure of phosphatidylserine. Cell Physiol Biochem 12:373–384 PubMed
Bokori-Brown M, Petrov PG, Khafaji MA et al (2016) Red blood cell susceptibility to Pneumolysin: correlation with membrane biochemical and physical properties*. J Biol Chem 291:10210–10227 PubMed PMC
Soma P, Bester J (2022) Pathophysiological changes in Erythrocytes contributing to complications of inflammation and coagulation in COVID-19. Front Physiol 13:899629 PubMed PMC
Basu S, Banerjee D, Chandra S, Chakrabarti A (2010) Eryptosis in hereditary spherocytosis and thalassemia: role of glycoconjugates. Glycoconj J 27:717–722 PubMed
Moumni I, Khalfaoui K, Safra I, Chebbi M, Barmate M, Chaouechi D, Ben Khaled M, Ouederni M, Mellouli F, Menif S (2020) Eryptosis and circulating blood cells microparticules in sickle cell diseases. Eur J Public Health 30:ckaa166--1147
Bouguerra G, Talbi K, Trabelsi N et al (2021) Enhanced eryptosis in glucose-6-Phosphate dehydrogenase deficiency. Cell Physiol Biochem 55:761–772 PubMed
Sæbø IP, Bjørås M, Franzyk H, Helgesen E, Booth JA (2023) Optimization of the hemolysis assay for the assessment of cytotoxicity. Int J Mol Sci 24(3):2914 PubMed PMC
Baskurt OK, Meiselman HJ (2013) Red blood cell mechanical stability test. Clin Hemorheol Microcirc 55:55–62 PubMed
Abdel-Razeq H, Hashem H (2020) Recent update in the pathogenesis and treatment of chemotherapy and cancer induced anemia. Crit Rev Oncol/Hematol 145:102837 PubMed
Lang E, Bissinger R, Qadri SM, Lang F (2017) Suicidal death of erythrocytes in cancer and its chemotherapy: a potential target in the treatment of tumor-associated anemia. Int J Cancer 141:1522–1528 PubMed
Pretorius E, du Plooy JN, Bester J (2016) A comprehensive review on Eryptosis. Cell Physiol Biochem 39:1977–2000 PubMed
Qadri SM, Bissinger R, Solh Z, Oldenborg PA (2017) Eryptosis in health and disease: a paradigm shift towards understanding the (patho)physiological implications of programmed cell death of erythrocytes. Blood Rev 31:349–361 PubMed
Alghareeb SA, Alfhili MA, Fatima S (2023) Molecular mechanisms and pathophysiological significance of eryptosis. Int J Mol Sci 24(6):5079 PubMed PMC
Fırat U, Kaya S, Çim A, Büyükbayram H, Gökalp O, Dal MS, Tamer MN (2012) Increased caspase-3 immunoreactivity of erythrocytes in STZ diabetic rats. J Diabet Res 2012(1):316384 PubMed PMC
Turpin C, Catan A, Guerin-Dubourg A et al (2020) Enhanced oxidative stress and damage in glycated erythrocytes. PLoS ONE 15:e0235335 PubMed PMC
Katahira I, Neo S, Nagane M, Miyagi S, Hisasue M, Bhuyan AAM (2020) Characterization of suicidal erythrocyte death (eryptosis) in dogs. Cell Physiol Biochem 54:605–614 PubMed
Pretorius E, Swanepoel AC, Buys AV, Vermeulen N, Duim W, Kell DB (2014) Eryptosis as a marker of Parkinson’s disease. Aging 6:788–819 PubMed PMC
Kaliuzhka V, Tkachenko A, Myasoedov V et al (2023) The Prognostic Value of Eryptosis parameters in the cerebrospinal fluid for cerebral vasospasm and delayed cerebral ischemia formation. World Neurosurg 173:e578–e585 PubMed
Serrano-del Valle A, Anel A, Naval J, Marzo I (2019) Immunogenic cell death and immunotherapy of multiple myeloma. Front Cell Dev Biol 7:50 PubMed PMC
Sprooten J, De Wijngaert P, Vanmeerbeek I, Martin S, Vangheluwe P, Schlenner S, Krysko DV, Parys JB, Bultynck G, Vandenabeele P, Garg AD (2020) Necroptosis in immuno-oncology and cancer immunotherapy. Cells 9(8):1823 PubMed PMC
Zelenak C, Eberhard M, Jilani K, Qadri SM, Macek B, Lang F (2012) Protein kinase CK1α regulates erythrocyte survival. Cell Physiol Biochem 29:171–180 PubMed
Vota DM, Maltaneri RE, Wenker SD, Nesse AB, Vittori DC (2013) Differential erythropoietin action upon cells induced to eryptosis by different agents. Cell Biochem Biophys 65:145–157 PubMed
Kucherenko Y, Zelenak C, Eberhard M, Qadri SM, Lang F (2012) Effect of casein kinase 1α activator pyrvinium pamoate on erythrocyte ion channels. Cell Physiol Biochem 30:407–417 PubMed
Myklebust JH, Smeland EB, Josefsen D, Sioud M (2000) Protein kinase C-alpha isoform is involved in erythropoietin-induced erythroid differentiation of CD34(+) progenitor cells from human bone marrow. Blood 95:510–518 PubMed
Mirandola P, Gobbi G, Ponti C, Sponzilli I, Cocco L, Vitale M (2006) PKCepsilon controls protection against TRAIL in erythroid progenitors. Blood 107:508–513 PubMed
Reyland ME (2009) Protein kinase C isoforms: multi-functional regulators of cell life and death. Front Biosci (Landmark Ed) 14:2386–2399 PubMed PMC
Klarl BA, Lang PA, Kempe DS et al (2006) Protein kinase C mediates erythrocyte programmed cell death following glucose depletion. Am J Physiol Cell Physiol 290:C244–253 PubMed
Ghashghaeinia M, Koralkova P, Giustarini D et al (2020) The specific PKC-α inhibitor chelerythrine blunts costunolide-induced eryptosis. Apoptosis 25:674–685 PubMed PMC
Geest CR, Coffer PJ (2009) MAPK signaling pathways in the regulation of hematopoiesis. J Leukoc Biol 86:237–250 PubMed
Hazegh K, Fang F, Kelly K et al (2022) Erythrocyte mitogen-activated protein kinases mediate hemolytic events under osmotic and oxidative stress and in hemolytic diseases. Cell Signal 99:110450 PubMed PMC
Kale J, Osterlund EJ, Andrews DW (2018) BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ 25:65–80 PubMed PMC
Qian S, Wei Z, Yang W, Huang J, Yang Y, Wang J (2022) The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front Oncol 12:985363 PubMed PMC
Zhao X, Khan N, Gan H et al (2017) Bcl-xL mediates RIPK3-dependent necrosis in M. Tuberculosis-infected macrophages. Mucosal Immunol 10:1553–1568 PubMed PMC
Matarrese P, Straface E, Pietraforte D et al (2005) Peroxynitrite induces senescence and apoptosis of red blood cells through the activation of aspartyl and cysteinyl proteases. Faseb J 19:416–418 PubMed
Reichelt D, Jacobsohn E, Haschen RJ (1974) Purification and properties of cathepsin D from human erythrocytes. Biochim et Biophys Acta (BBA) - Enzymol 341:15–26 PubMed
Takehara S, Terayama H (1984) A serum factor stimulating cathepsin D-release from erythrocytes or ghosts. Int J Biochem 16:147–153 PubMed
Green DR (2022) Caspases and their substrates. Cold Spring Harbor Perspect Biol 14(3):a041012 PubMed PMC