Mn3O4 Nanocrystal-Induced Eryptosis Features Ca2+ Overload, ROS and RNS Accumulation, Calpain Activation, Recruitment of Caspases, and Changes in the Lipid Order of Cell Membranes
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
EHA Ukraine Bridge Funding
European Hematology Association
DRO - VFN00064165
MH CR
EXCELES - LX22NPO5102
NICR
Cooperatio
MEYS CR
PubMed
40244142
PubMed Central
PMC11989249
DOI
10.3390/ijms26073284
PII: ijms26073284
Knihovny.cz E-resources
- Keywords
- calcium signaling, cytotoxicity, eryptosis, nanoparticles, oxidative stress, regulated cell death,
- MeSH
- Cell Membrane * metabolism drug effects MeSH
- Eryptosis * drug effects MeSH
- Erythrocytes drug effects metabolism MeSH
- Hemolysis drug effects MeSH
- Calpain * metabolism MeSH
- Caspases * metabolism MeSH
- Humans MeSH
- Nanoparticles * chemistry MeSH
- Oxides * pharmacology chemistry MeSH
- Reactive Nitrogen Species * metabolism MeSH
- Reactive Oxygen Species * metabolism MeSH
- Manganese Compounds * pharmacology chemistry MeSH
- Calcium * metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Calpain * MeSH
- Caspases * MeSH
- manganese oxide MeSH Browser
- Oxides * MeSH
- Reactive Nitrogen Species * MeSH
- Reactive Oxygen Species * MeSH
- Manganese Compounds * MeSH
- Calcium * MeSH
Accumulating evidence suggests that manganese oxide nanoparticles (NPs) show multiple enzyme-mimicking antioxidant activities, which supports their potential in redox-targeting therapeutic strategies for diseases with impaired redox signaling. However, the systemic administration of any NP requires thorough hemocompatibility testing. In this study, we assessed the hemocompatibility of synthesized Mn3O4 NPs, identifying their ability to induce spontaneous hemolysis and eryptosis or impair osmotic fragility. Concentrations of up to 20 mg/L were found to be safe for erythrocytes. Eryptosis assays were shown to be more sensitive than hemolysis and osmotic fragility as markers of hemocompatibility for Mn3O4 NP testing. Flow cytometry- and confocal microscopy-based studies revealed that eryptosis induced by Mn3O4 NPs was accompanied by Ca2+ overload, altered redox homeostasis verified by enhanced intracellular reactive oxygen species (ROS) and reactive nitrogen species (RNS), and a decrease in the lipid order of cell membranes. Furthermore, Mn3O4 NP-induced eryptosis was calpain- and caspase-dependent.
BIOCEV 1st Faculty of Medicine Charles University Průmyslová 595 25250 Vestec Czech Republic
Department of Biochemistry 5 N Karazin Kharkiv National 4 Svobody sq 61022 Kharkiv Ukraine
Department of Chemistry Stockholm University Svante Arrhenius väg 16C SE 106 91 Stockholm Sweden
Universal Scientific Education and Research Network 61022 Kharkiv Ukraine
See more in PubMed
de la Harpe K.M., Kondiah P.P.D., Choonara Y.E., Marimuthu T., du Toit L.C., Pillay V. The Hemocompatibility of Nanoparticles: A Review of Cell-Nanoparticle Interactions and Hemostasis. Cells. 2019;8:1209. doi: 10.3390/cells8101209. PubMed DOI PMC
Tran H.D.N., Akther F., Xu Z.P., Ta H.T. Chapter 6—Effects of nanoparticles on the blood coagulation system (nanoparticle interface with the blood coagulation system) In: Denizli A., Nguyen T.A., Rajan M., Alam M.F., Rahman K., editors. Nanotechnology for Hematology, Blood Transfusion, and Artificial Blood. Elsevier; Amsterdam, The Netherlands: 2022. pp. 113–140.
Hofer S., Hofstätter N., Punz B., Hasenkopf I., Johnson L., Himly M. Immunotoxicity of nanomaterials in health and disease: Current challenges and emerging approaches for identifying immune modifiers in susceptible populations. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022;14:e1804. PubMed PMC
Baskurt O.K., Meiselman H.J. Erythrocyte aggregation: Basic aspects and clinical importance. Clin. Hemorheol. Microcirc. 2013;53:23–37. doi: 10.3233/CH-2012-1573. PubMed DOI
Yedgar S., Barshtein G., Gural A. Hemolytic Activity of Nanoparticles as a Marker of Their Hemocompatibility. Micromachines. 2022;13:2091. doi: 10.3390/mi13122091. PubMed DOI PMC
Van Avondt K., Nur E., Zeerleder S. Mechanisms of haemolysis-induced kidney injury. Nat. Rev. Nephrol. 2019;15:671–692. PubMed
Bozza M.T., Jeney V. Pro-inflammatory Actions of Heme and Other Hemoglobin-Derived DAMPs. Front. Immunol. 2020;11:1323. PubMed PMC
Tkachenko A. Hemocompatibility studies in nanotoxicology: Hemolysis or eryptosis? (A review) Toxicol. Vitr. 2024;98:105814. PubMed
Lang K.S., Lang P.A., Bauer C., Duranton C., Wieder T., Huber S.M., Lang F. Mechanisms of suicidal erythrocyte death. Cell Physiol. Biochem. 2005;15:195–202. PubMed
Dreischer P., Duszenko M., Stein J., Wieder T. Eryptosis: Programmed Death of Nucleus-Free, Iron-Filled Blood Cells. Cells. 2022;11:503. doi: 10.3390/cells11030503. PubMed DOI PMC
Tkachenko A., Onishchenko A. Casein kinase 1α mediates eryptosis: A review. Apoptosis. 2023;28:1–19. PubMed
Tkachenko A. Apoptosis and eryptosis: Similarities and differences. Apoptosis. 2024;29:482–502. doi: 10.1007/s10495-023-01915-4. PubMed DOI
Liu X., Wang Q., Zhao H., Zhang L., Su Y., Lv Y. BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics. Analyst. 2012;137:4552–4558. PubMed
Huang Y., Liu Z., Liu C., Ju E., Zhang Y., Ren J., Qu X. Self-Assembly of Multi-nanozymes to Mimic an Intracellular Antioxidant Defense System. Angew. Chem. Int. Ed. Engl. 2016;55:6646–6650. PubMed
Singh N., Savanur M.A., Srivastava S., D’Silva P., Mugesh G. A Redox Modulatory Mn3O4 Nanozyme with Multi-Enzyme Activity Provides Efficient Cytoprotection to Human Cells in a Parkinson’s Disease Model. Angew. Chem. Int. Ed. Engl. 2017;56:14267–14271. doi: 10.1002/anie.201708573. PubMed DOI
Yao J., Cheng Y., Zhou M., Zhao S., Lin S., Wang X., Wu J., Li S., Wei H. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem. Sci. 2018;9:2927–2933. PubMed PMC
Shan X., Li J., Liu J., Feng B., Zhang T., Liu Q., Ma H., Wu H., Wu H. Targeting ferroptosis by poly(acrylic) acid coated Mn3O4 nanoparticles alleviates acute liver injury. Nat. Commun. 2023;14:7598. PubMed PMC
Rónavári A., Ochirkhuyag A., Igaz N., Szerencsés B., Ballai G., Huliák I., Bocz C., Kovács Á., Pfeiffer I., Kiricsi M., et al. Preparation, characterization and in vitro evaluation of the antimicrobial and antitumor activity of MnOx nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2024;688:133528.
Chen X., Wu G., Zhang Z., Ma X., Liu L. Neurotoxicity of Mn3O4 nanoparticles: Apoptosis and dopaminergic neurons damage pathway. Ecotoxicol. Environ. Saf. 2020;188:109909. PubMed
Fernández-Pampín N., González Plaza J.J., García-Gómez A., Peña E., Rumbo C., Barros R., Martel-Martín S., Aparicio S., Tamayo-Ramos J.A. Toxicology assessment of manganese oxide nanomaterials with enhanced electrochemical properties using human in vitro models representing different exposure routes. Sci. Rep. 2022;12:20991. PubMed PMC
Tkachenko A., Havranek O. Cell death signaling in human erythron: Erythrocytes lose the complexity of cell death machinery upon maturation. Apoptosis. 2025;30:652–673. PubMed PMC
Shaik M.R., Syed R., Adil S.F., Kuniyil M., Khan M., Alqahtani M.S., Shaik J.P., Siddiqui M.R.H., Al-Warthan A., Sharaf M.A.F., et al. Mn3O4 nanoparticles: Synthesis, characterization and their antimicrobial and anticancer activity against A549 and MCF-7 cell lines. Saudi J. Biol. Sci. 2021;28:1196–1202. doi: 10.1016/j.sjbs.2020.11.087. PubMed DOI PMC
Bissinger R., Bhuyan A.A.M., Qadri S.M., Lang F. Oxidative stress, eryptosis and anemia: A pivotal mechanistic nexus in systemic diseases. FEBS J. 2019;286:826–854. PubMed
Tkachenko A., Havránek O. Redox Status of Erythrocytes as an Important Factor in Eryptosis and Erythronecroptosis. Folia Biol. 2023;69:116–126. PubMed
Matarrese P., Straface E., Pietraforte D., Gambardella L., Vona R., Maccaglia A., Minetti M., Malorni W. Peroxynitrite induces senescence and apoptosis of red blood cells through the activation of aspartyl and cysteinyl proteases. FASEB J. 2005;19:416–418. PubMed
Van der Paal J., Neyts E.C., Verlackt C.C.W., Bogaerts A. Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress. Chem. Sci. 2016;7:489–498. PubMed PMC
Zangeneh A.R., Takhshid M.A., Ranjbaran R., Maleknia M., Meshkibaf M.H. Diverse Effect of Vitamin C and N-Acetylcysteine on Aluminum-Induced Eryptosis. Biochem. Res. Int. 2021;2021:6670656. doi: 10.1155/2021/6670656. PubMed DOI PMC
Tkachenko M., Onishchenko A., Tryfonyuk L., Butov D., Kot K., Novikova V., Fan L., Prokopiuk V., Kot Y., Tkachenko A. Human chemerin induces eryptosis at concentrations exceeding circulating levels. Biocell. 2024;48:1197–1208. doi: 10.32604/biocell.2024.050206. DOI
Föller M., Lang F. Ion Transport in Eryptosis, the Suicidal Death of Erythrocytes. Front. Cell Dev. Biol. 2020;8:597. PubMed PMC
Berg C.P., Engels I.H., Rothbart A., Lauber K., Renz A., Schlosser S.F., Schulze-Osthoff K., Wesselborg S. Human mature red blood cells express caspase-3 and caspase-8, but are devoid of mitochondrial regulators of apoptosis. Cell Death Differ. 2001;8:1197–1206. PubMed
Bratosin D., Estaquier J., Petit F., Arnoult D., Quatannens B., Tissier J.P., Slomianny C., Sartiaux C., Alonso C., Huart J.J., et al. Programmed cell death in mature erythrocytes: A model for investigating death effector pathways operating in the absence of mitochondria. Cell Death Differ. 2001;8:1143–1156. PubMed
Mandal D., Mazumder A., Das P., Kundu M., Basu J. Fas-, Caspase 8-, and Caspase 3-dependent Signaling Regulates the Activity of the Aminophospholipid Translocase and Phosphatidylserine Externalization in Human Erythrocytes. J. Biol. Chem. 2005;280:39460–39467. doi: 10.1074/jbc.M506928200. PubMed DOI
Restivo I., Attanzio A., Giardina I.C., Di Gaudio F., Tesoriere L., Allegra M. Cigarette Smoke Extract Induces p38 MAPK-Initiated, Fas-Mediated Eryptosis. Int. J. Mol. Sci. 2022;23:14730. doi: 10.3390/ijms232314730. PubMed DOI PMC
Restivo I., Attanzio A., Tesoriere L., Allegra M., Garcia-Llatas G., Cilla A. A Mixture of Dietary Plant Sterols at Nutritional Relevant Serum Concentration Inhibits Extrinsic Pathway of Eryptosis Induced by Cigarette Smoke Extract. Int. J. Mol. Sci. 2023;24:1264. doi: 10.3390/ijms24021264. PubMed DOI PMC
Tkachenko A., Havranek O. Erythronecroptosis: An overview of necroptosis or programmed necrosis in red blood cells. Mol. Cell. Biochem. 2024;479:3273–3291. PubMed
Dias G.F., Grobe N., Rogg S., Jörg D.J., Pecoits-Filho R., Moreno-Amaral A.N., Kotanko P. The Role of Eryptosis in the Pathogenesis of Renal Anemia: Insights from Basic Research and Mathematical Modeling. Front. Cell Dev. Biol. 2020;8:598148. doi: 10.3389/fcell.2020.598148. PubMed DOI PMC
Borst O., Abed M., Alesutan I., Towhid S.T., Qadri S.M., Föller M., Gawaz M., Lang F. Dynamic adhesion of eryptotic erythrocytes to endothelial cells via CXCL16/SR-PSOX. Am. J. Physiol. Cell Physiol. 2012;302:C644–C651. doi: 10.1152/ajpcell.00340.2011. PubMed DOI
Tkachenko A.S., Kot Y.G., Kapustnik V.A., Myasoedov V.V., Makieieva N.I., Chumachenko T.O., Onishchenko A.I., Lukyanova Y.M., Nakonechna O.A. Semi-refined carrageenan promotes generation of reactive oxygen species in leukocytes of rats upon oral exposure but not in vitro. Wien. Med. Wochenschr. 2021;171:68–78. doi: 10.1007/s10354-020-00786-7. PubMed DOI
Brands J., Bravo S., Jürgenliemke L., Grätz L., Schihada H., Frechen F., Alenfelder J., Pfeil C., Ohse P.G., Hiratsuka S., et al. A molecular mechanism to diversify Ca2+ signaling downstream of Gs protein-coupled receptors. Nat. Commun. 2024;15:7684. doi: 10.1038/s41467-024-51991-6. PubMed DOI PMC
Klymchenko A.S. Fluorescent Probes for Lipid Membranes: From the Cell Surface to Organelles. Acc. Chem. Res. 2023;56:1–12. PubMed
Pyrshev K.A., Yesylevskyy S.O., Mély Y., Demchenko A.P., Klymchenko A.S. Caspase-3 activation decreases lipid order in the outer plasma membrane leaflet during apoptosis: A fluorescent probe study. Biochim. Biophys. Acta Biomembr. 2017;1859:2123–2132. PubMed