Peripheral blood lymphocytes immunophenotyping predicts disease activity in clinically isolated syndrome patients
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
28754092
PubMed Central
PMC5534044
DOI
10.1186/s12883-017-0915-1
PII: 10.1186/s12883-017-0915-1
Knihovny.cz E-zdroje
- Klíčová slova
- Clinically isolated syndrome, Flow cytometry, Lymphocyte subpopulations, Multiple sclerosis,
- MeSH
- biologické markery krev MeSH
- demyelinizační nemoci patologie MeSH
- imunofenotypizace metody MeSH
- interferon beta 1a terapeutické užití MeSH
- lidé MeSH
- lymfocyty patologie MeSH
- postižení MeSH
- progrese nemoci MeSH
- recidiva MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- interferon beta 1a MeSH
BACKGROUND: Clinically isolated syndrome (CIS) represents first neurological symptoms suggestive of demyelinating lesion in the central nervous system (CNS). Currently, there are no sufficient immunological or genetic markers predicting relapse and disability progression, nor there is evidence of the efficacy of registered disease modifying treatments (DMTs), such as intramuscular interferon beta1a. The aim of the study is to evaluate immunological predictors of a relapse or disability progression. METHODS: One hundred and eighty one patients with CIS were treated with interferon beta1a and followed over the period of 4 years. Lymphocyte subsets were analyzed by flow cytometry. A Kaplan-Meier estimator of survival probability was used to analyze prognosis. For statistical assessment only individual differences between baseline values and values at the time of relapse or confirmed disability progression were analysed. RESULTS: Higher levels of B lymphocytes predicted relapse-free status. On the other hand, a decrease of the naïve subset of cells (CD45RA+ in CD4+) after 12, 24, and 36 months of follow-up were associated with an increased risk of confirmed disability progression. CONCLUSION: Our data suggest that the quantification of lymphocyte subsets in patients after the first demyelinating event suggestive of MS may be an important biomarker.
Zobrazit více v PubMed
Comi G, Martinelli V, Rodegher M, Moiola L, Bajenaru O, Carra A, Elovaara I, Fazekas F, Hartung H, Hillert J. Effect of glatiramer acetate on conversion to clinically definite multiple sclerosis in patients with clinically isolated syndrome (PreCISe study): a randomised, double-blind, placebo-controlled trial. Lancet. 2009;374(9700):1503–1511. doi: 10.1016/S0140-6736(09)61259-9. PubMed DOI
Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L, Lublin FD, Metz LM, McFarland HF, O'Connor PW. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald criteria”. Ann Neurol. 2005;58(6):840–846. doi: 10.1002/ana.20703. PubMed DOI
Thouvenot É. Update on clinically isolated syndrome. Presse Med. 2015;44(4):e121–e136. doi: 10.1016/j.lpm.2015.03.002. PubMed DOI
Fisniku L, Brex P, Altmann D, Miszkiel K, Benton C, Lanyon R, Thompson A, Miller D. Disability and T2 MRI lesions: a 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain. 2008;131(3):808–817. doi: 10.1093/brain/awm329. PubMed DOI
Dobson R, Rudick RA, Turner B, Schmierer K, Giovannoni G. Assessing treatment response to interferon-β is there a role for MRI. Neurology. 2014;82(3):248–254. doi: 10.1212/WNL.0000000000000036. PubMed DOI PMC
Uher T, Horakova D, Bergsland N, Tyblova M, Ramasamy DP, Seidl Z, Vaneckova M, Krasensky J, Havrdova E, Zivadinov R. MRI correlates of disability progression in patients with CIS over 48 months. NeuroImage: Clinical. 2014;6:312–319. doi: 10.1016/j.nicl.2014.09.015. PubMed DOI PMC
Tumani H, Hartung H-P, Hemmer B, Teunissen C, Deisenhammer F, Giovannoni G, Zettl UK, Group BS Cerebrospinal fluid biomarkers in multiple sclerosis. Neurobiol Dis. 2009;35(2):117–127. doi: 10.1016/j.nbd.2009.04.010. PubMed DOI
Brettschneider J, Tumani H, Kiechle U, Muche R, Richards G, Lehmensiek V, Ludolph AC, Otto M. IgG antibodies against measles, rubella, and varicella zoster virus predict conversion to multiple sclerosis in clinically isolated syndrome. PLoS One. 2009;4(11) doi: 10.1371/journal.pone.0007638. PubMed DOI PMC
Bennett JL, Haubold K, Ritchie AM, Edwards SJ, Burgoon M, Shearer AJ, Gilden DH, Owens GP. CSF IgG heavy-chain bias in patients at the time of a clinically isolated syndrome. J Neuroimmunol. 2008;199(1):126–132. doi: 10.1016/j.jneuroim.2008.04.031. PubMed DOI PMC
Brettschneider J, Czerwoniak A, Senel M, Fang L, Kassubek J, Pinkhardt E, Lauda F, Kapfer T, Jesse S, Lehmensiek V. The chemokine CXCL13 is a prognostic marker in clinically isolated syndrome (CIS) PLoS One. 2010;5(8) doi: 10.1371/journal.pone.0011986. PubMed DOI PMC
Brettschneider J, Petzold A, Süssmuth S, Ludolph A, Tumani H. Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology. 2006;66(6):852–856. doi: 10.1212/01.wnl.0000203120.85850.54. PubMed DOI
Comabella M, Fernández M, Martin R, Rivera-Vallvé S, Borrás E, Chiva C, Julià E, Rovira A, Cantó E, Alvarez-Cermeño JC. Cerebrospinal fluid chitinase 3-like 1 levels are associated with conversion to multiple sclerosis. Brain. 2010;133(4):1082–1093. doi: 10.1093/brain/awq035. PubMed DOI
Tintore M, Rovira À, Río J, Otero-Romero S, Arrambide G, Tur C, Comabella M, Nos C, Arévalo MJ, Negrotto L: Defining high, medium and low impact prognostic factors for developing multiple sclerosis. Brain 2015:awv105. PubMed
Lassmann H, Ransohoff RM. The CD4–Th1 model for multiple sclerosis: a crucial re-appraisal. Trends Immunol. 2004;25(3):132–137. doi: 10.1016/j.it.2004.01.007. PubMed DOI
Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev Immunol. 2005;23:683–747. doi: 10.1146/annurev.immunol.23.021704.115707. PubMed DOI
Rinaldi L, Gallo P, Calabrese M, Ranzato F, Luise D, Colavito D, Motta M, Guglielmo A, Del Giudice E, Romualdi C. Longitudinal analysis of immune cell phenotypes in early stage multiple sclerosis: distinctive patterns characterize MRI-active patients. Brain. 2006;129(8):1993–2007. doi: 10.1093/brain/awl179. PubMed DOI
Kebir H, Ifergan I, Alvarez JI, Bernard M, Poirier J, Arbour N, Duquette P, Prat A. Preferential recruitment of interferon-γ–expressing TH17 cells in multiple sclerosis. Ann Neurol. 2009;66(3):390–402. doi: 10.1002/ana.21748. PubMed DOI
Durelli L, Conti L, Clerico M, Boselli D, Contessa G, Ripellino P, Ferrero B, Eid P, Novelli F. T-helper 17 cells expand in multiple sclerosis and are inhibited by interferon-β. Ann Neurol. 2009;65(5):499–509. doi: 10.1002/ana.21652. PubMed DOI
Zastepa E, Fitz-Gerald L, Hallett M, Antel J, Bar-Or A, Baranzini S, Lapierre Y, Haegert DG. Naive CD4 T-cell activation identifies MS patients having rapid transition to progressive MS. Neurology. 2014;82(8):681–690. doi: 10.1212/WNL.0000000000000146. PubMed DOI PMC
Villar LM, Espiño M, Roldán E, Marín N, Costa-Frossard L, Muriel A, Álvarez-Cermeño JC. Increased peripheral blood CD5+ B cells predict earlier conversion to MS in high-risk clinically isolated syndromes. Mult Scler J. 2011;17(6):690–694. doi: 10.1177/1352458510396922. PubMed DOI
Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69(2):292–302. doi: 10.1002/ana.22366. PubMed DOI PMC
Kappos L, De Stefano N, Freedman MS, Cree BA, Radue E-W, Sprenger T, Sormani MP, Smith T, Häring DA, Meier DP. Inclusion of brain volume loss in a revised measure of ‘no evidence of disease activity’(NEDA-4) in relapsing–remitting multiple sclerosis. Mult Scler J. 2015;1352458515616701 PubMed PMC
Bongioanni P, Fioretti C, Vanacore R, Bianchi F, Lombardo F, Ambrogi F, Meucci G. Lymphocyte subsets in multiple sclerosis a study with two-colour fluorescence analysis. J Neurol Sci. 1996;139(1):71–77. doi: 10.1016/0022-510X(96)00030-5. PubMed DOI
Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986;136(7):2348–2357. PubMed
Constantinescu CS, Gran B. The essential role of T cells in multiple sclerosis: a reappraisal. Biom J. 2014;37(2):34. PubMed
Raphael I, Nalawade S, Eagar TN, Forsthuber TG. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine. 2015;74(1):5–17. PubMed PMC
Eoli M, Ferrarini M, Dufour A, Heltaj S, Bevilacqua L, Comi G, Cosi V, Filippini G, Martinelli V, Milanese C. Presence of T-cell subset abnormalities in newly diagnosed cases of multiple sclerosis and relationship with short-term clinical activity. J Neurol. 1993;240(2):79–82. doi: 10.1007/BF00858721. PubMed DOI
Calopa M, Bas J, Mestre M, Arbizu T, Peres J, Buendia E. T cell subsets in multiple sclerosis: a serial study. Acta Neurol Scand. 1995;92(5):361–368. doi: 10.1111/j.1600-0404.1995.tb00147.x. PubMed DOI
Lehmann D, Karussis D, Mizrachi-Koll R, Linde AS, Abramsky O. Inhibition of the progression of multiple sclerosis by linomide is associated with upregulation of CD4+/CD45RA+ cells and downregulation of CD4+/CD45RO+ cells. Clin Immunol Immunopathol. 1997;85(2):202–209. doi: 10.1006/clin.1997.4444. PubMed DOI
Kreuzfelder E, Shen G, Bittorf M, Scheiermann N, Thraenhart O, Seidel D, Grosse-Wilde H. Enumeration of T, B and natural killer peripheral blood cells of patients with multiple sclerosis and controls. Eur Neurol. 1992;32(4):190–194. doi: 10.1159/000116820. PubMed DOI
Lee-Chang C, Zéphir H, Top I, Dubucquoi S, Trauet J, Prin L, Vermersch P. B-cell subsets up-regulate α4 integrin and accumulate in the cerebrospinal fluid in clinically isolated syndrome suggestive of multiple sclerosis onset. Neurosci Lett. 2011;487(3):273–277. doi: 10.1016/j.neulet.2010.10.036. PubMed DOI
Haas J, Bekeredjian-Ding I, Milkova M, Balint B, Schwarz A, Korporal M, Jarius S, Fritz B, Lorenz H-M, Wildemann B. B cells undergo unique compartmentalized redistribution in multiple sclerosis. J Autoimmun. 2011;37(4):289–299. doi: 10.1016/j.jaut.2011.08.003. PubMed DOI
Disanto G, Morahan J, Barnett M, Giovannoni G, Ramagopalan S. The evidence for a role of B cells in multiple sclerosis. Neurology. 2012;78(11):823–832. doi: 10.1212/WNL.0b013e318249f6f0. PubMed DOI PMC
Ramgolam VS, Sha Y, Marcus KL, Choudhary N, Troiani L, Chopra M, Markovic-Plese S. B cells as a therapeutic target for IFN-β in relapsing–remitting multiple sclerosis. J Immunol. 2011;186(7):4518–4526. doi: 10.4049/jimmunol.1000271. PubMed DOI
Seidi O, Semra Y, Sharief M. Expression of CD5 on B lymphocytes correlates with disease activity in patients with multiple sclerosis. J Neuroimmunol. 2002;133(1):205–210. doi: 10.1016/S0165-5728(02)00360-0. PubMed DOI
Niino M, Hirotani M, Miyazaki Y, Sasaki H. Memory and naive B-cell subsets in patients with multiple sclerosis. Neurosci Lett. 2009;464(1):74–78. doi: 10.1016/j.neulet.2009.08.010. PubMed DOI
De Jager PL, Rossin E, Pyne S, Tamayo P, Ottoboni L, Viglietta V, Weiner M, Soler D, Izmailova E, Faron-Yowe L. Cytometric profiling in multiple sclerosis uncovers patient population structure and a reduction of CD8low cells. Brain. 2008;131(7):1701–1711. doi: 10.1093/brain/awn118. PubMed DOI PMC
Martinez-Rodriguez J, Lopez-Botet M, Munteis E, Rio J, Roquer J, Montalban X, Comabella M. Natural killer cell phenotype and clinical response to interferon-beta therapy in multiple sclerosis. Clin Immunol. 2011;141(3):348–356. doi: 10.1016/j.clim.2011.09.006. PubMed DOI
Hamann I, Dörr J, Glumm R, Chanvillard C, Janssen A, Millward JM, Paul F, Ransohoff RM, Infante-Duarte C. Characterization of natural killer cells in paired CSF and blood samples during neuroinflammation. J Neuroimmunol. 2013;254(1):165–169. doi: 10.1016/j.jneuroim.2012.08.009. PubMed DOI
Bielekova B, Catalfamo M, Reichert-Scrivner S, Packer A, Cerna M, Waldmann TA, McFarland H, Henkart PA, Martin R. Regulatory CD56bright natural killer cells mediate immunomodulatory effects of IL-2Rα-targeted therapy (daclizumab) in multiple sclerosis. Proc Natl Acad Sci. 2006;103(15):5941–5946. doi: 10.1073/pnas.0601335103. PubMed DOI PMC
Saraste M, Irjala H, Airas L. Expansion of CD56Bright natural killer cells in the peripheral blood of multiple sclerosis patients treated with interferon-beta. Neurol Sci. 2007;28(3):121–126. doi: 10.1007/s10072-007-0803-3. PubMed DOI
Vandenbark AA, Huan J, Agotsch M, La Tocha D, Goelz S, Offner H, Lanker S, Bourdette D. Interferon-beta-1a treatment increases CD56 bright natural killer cells and CD4+ CD25+ Foxp3 expression in subjects with multiple sclerosis. J Neuroimmunol. 2009;215(1):125–128. doi: 10.1016/j.jneuroim.2009.08.007. PubMed DOI
Analysis of cerebrospinal fluid cells by flow cytometry: Comparison to conventional cytology