Isotopic analyses suggest mammoth and plant in the diet of the oldest anatomically modern humans from far southeast Europe

. 2017 Jul 28 ; 7 (1) : 6833. [epub] 20170728

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28754955
Odkazy

PubMed 28754955
PubMed Central PMC5533724
DOI 10.1038/s41598-017-07065-3
PII: 10.1038/s41598-017-07065-3
Knihovny.cz E-zdroje

Relatively high 15N abundances in bone collagen of early anatomically modern humans in Europe have often been interpreted as a specific consumption of freshwater resources, even if mammoth is an alternative high 15N prey. At Buran-Kaya III, access to associated fauna in a secured archaeological context and application of recently developed isotopic analyses of individuals amino acids offer the opportunity to further examine this hypothesis. The site of Buran-Kaya III is located in south Crimea and has provided a rich archaeological sequence including two Upper Palaeolithic layers, from which human fossils were retrieved and directly dated as from 37.8 to 33.1 ka cal BP. Results from bulk collagen of three human remains suggests the consumption of a high 15N prey besides the contribution of saiga, red deer, horse and hare, whose butchered remains were present at the site. In contrast to bulk collagen, phenylalanine and glutamic acid 15N abundances reflect not only animal but also plant protein contributions to omnivorous diet, and allow disentangling aquatic from terrestrial resource consumption. The inferred human trophic position values point to terrestrial-based diet, meaning a significant contribution of mammoth meat, in addition to a clear intake of plant protein.

Zobrazit více v PubMed

Benazzi S, et al. Early dispersal of modern humans in Europe and implications for Neanderthal behaviour. Nature. 2011;479(7374):525–528. doi: 10.1038/nature10617. PubMed DOI

Higham T, et al. The timing and spatiotemporal patterning of Neanderthal disappearance. Nature. 2014;512(7514):306–309. doi: 10.1038/nature13621. PubMed DOI

Hublin JJ. The modern human colonization of western Eurasia: when and where? Quat. Sci. Rev. 2015;118:194–210. doi: 10.1016/j.quascirev.2014.08.011. DOI

Fu Q, et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature. 2015;524(7564):216–219. doi: 10.1038/nature14558. PubMed DOI PMC

Hockett B, Haws JA. Nutritional ecology and the human demography of Neandertal extinction. Quat. Int. 2005;137(1):21–34. doi: 10.1016/j.quaint.2004.11.017. DOI

O’connell, J. F. How did modern humans displace Neanderthals? Insights from hunter-gatherer ethnography and archaeology In: When Neanderthals and Modern Humans Met. (ed. Conard, N. J.) 43–64 (Kerns Verlag, 2006).

Richards MP, Pettitt PB, Stiner MC, Trinkaus E. Stable isotope evidence for increasing dietary breadth in the European mid-Upper Paleolithic. Proc. Natl. Acad. Sci. 2001;98(11):6528–6532. doi: 10.1073/pnas.111155298. PubMed DOI PMC

Richards MP, Trinkaus E. Isotopic evidence for the diets of European Neanderthals and early modern humans. Proc. Natl. Acad. Sci. 2009;106(38):16034–16039. doi: 10.1073/pnas.0903821106. PubMed DOI PMC

Fu Q, et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature. 2014;514(7523):445–449. doi: 10.1038/nature13810. PubMed DOI PMC

Bocherens H, et al. Isotopic biogeochemistry (13C, 15N) of fossil vertebrate collagen: application to the study of a past food web including Neandertal man. J. Hum. Evol. 1991;20(6):481–492. doi: 10.1016/0047-2484(91)90021-M. DOI

Bocherens H, Drucker DG, Billiou D, Patou-Mathis M, Vandermeersch B. Isotopic evidence for diet and subsistence pattern of the Saint-Césaire I Neanderthal: review and use of a multi-source mixing model. J. Hum. Evol. 2005;49(1):71–87. doi: 10.1016/j.jhevol.2005.03.003. PubMed DOI

Bocherens, H. Neanderthal dietary habits: review of the isotopic evidence In The evolution of Hominin diets (eds Hublin, J.-J. & Richards, M. P.) 241–250 (Springer, 2009).

Bocherens H, Drucker DG, Madelaine S. Evidence for a 15N positive excursion in terrestrial foodwebs at the Middle to Upper Palaeolithic transition in South-western France: implications for early modern human palaeodiet and palaeoenvironment. J. Hum. Evol. 2014;69:31–43. doi: 10.1016/j.jhevol.2013.12.015. PubMed DOI

Bocherens H. Isotopic tracking of large carnivore palaeoecology in the mammoth steppe. Quat. Sci. Rev. 2015;117:42–71. doi: 10.1016/j.quascirev.2015.03.018. DOI

Naito YI, Chikaraishi Y, Ohkouchi N, Drucker DG, Bocherens H. Nitrogen isotopic composition of collagen amino acids as an indicator of aquatic resource consumption: insights from Mesolithic and Epipalaeolithic archaeological sites in France. World Archaeol. 2013;45(3):338–359. doi: 10.1080/00438243.2013.820650. DOI

Naito YI, et al. An overview of methods used for the detection of aquatic resource consumption by humans: Compound-specific delta N-15 analysis of amino acids in archaeological materials. J. Archaeol. Sci.: Reports. 2016;6:720–732.

Naito YI, Chikaraishi Y, Ohkouchi N, Yoneda M. Evaluation of carnivory in inland Jomon hunter–gatherers based on nitrogen isotopic compositions of individual amino acids in bone collagen. J. Archaeol. Sci. 2013;40(7):2913–2923. doi: 10.1016/j.jas.2013.03.012. DOI

Naito YI, et al. Ecological niche of Neanderthals from Spy Cave revealed by nitrogen isotopes of individual amino acids in collagen. J. Hum. Evol. 2016;93:82–90. doi: 10.1016/j.jhevol.2016.01.009. PubMed DOI

McClelland JW, Montoya JP. Trophic Relationships and the Nitrogen Isotopic Composition of Amino Acids in Plankton. Ecology. 2002;83(8):2173–2180. doi: 10.1890/0012-9658(2002)083[2173:TRATNI]2.0.CO;2. DOI

Chikaraishi Y, et al. Determination of aquatic foodweb structure based on compound-specific nitrogen isotopic composition of amino acids. Limnol Oceanogr Methods. 2009;7:740–750. doi: 10.4319/lom.2009.7.740. DOI

Chikaraishi Y, et al. High-resolution food webs based on nitrogen isotopic composition of amino acids. Ecol. and Evol. 2014;4:2423–2449. doi: 10.1002/ece3.1103. PubMed DOI PMC

Janevic AA. Buran-Kaya 3 – Neue Angaben zur Kulturgliederung des Jungpaläolithikums der Krim. Préhist. Eur. 1998;13:133–148.

Pettitt, P. B. Middle and early upper Palaeolithic Crimea: the radiocarbon chronology in Préhistoire d’Anatolie, Genèse de deux mondes (ed. Otte, M.) 329–38 (ERAUL, 1998).

Chabai, V. P. The chronological and industrial variability of the Middle to Upper Paleolithic transition in eastern Europe in The chronology of the Aurignacian and of the transitional technocomplexes: Dating, stratigraphies, cultural implications (eds Zilhão, J. & d’Errico, F.) 71–288 (Instituto Português de Arqueologia, 2003).

Monigal, K. Introduction to the site of Buran-Kaya III In The Middle Paleolithic and Early Upper Paleolithic of Eastern Crimea (eds Chabai, V. P., Monigal, K. & Marks, A. E.), 3–18 (ERAUL, 2004).

Péan S, et al. The middle to upper Paleolithic sequence of Buran-Kaya III (Crimea, Ukraine): new stratigraphic, paleoenvironmental and chronological results. Radiocarbon. 2013;55(2–3):1454–1469. doi: 10.1017/S0033822200048384. DOI

Crépin L, Péan S, Lázničková-Galetová M. Comportements de subsistance au Paléolithique supérieur en Crimée: analyse archéozoologique des couches 6-2, 6-1 et 5-2 de Buran-Kaya III. L’Anthropologie. 2014;118(5):584–598. doi: 10.1016/j.anthro.2014.10.008. DOI

Prat S, et al. The Oldest Anatomically Modern Humans from Far Southeast Europe: Direct Dating, Culture and Behavior. PLoS ONE. 2011;6(6):e20834. doi: 10.1371/journal.pone.0020834. PubMed DOI PMC

Crépin L, Prat S, Péan S, Yanevich A. Traitement du cadavre des plus anciens hommes anatomiquement modernes de l’extrême sud-est de l’Europe (Buran-Kaya III, Ukraine) Bull. Mém. Soc. Anthropol. Paris. 2012;22(1):11.

Yanevich A. Buran-Kaya culture of the Crimea’s gravett (in Ukrainian) Archeologia. 2000;2:11–20.

Yanevich A. Les occupations gravettiennes de Buran-Kaya III (Crimée): contexte archéologique. L’Anthropologie. 2014;118:554–566. doi: 10.1016/j.anthro.2014.10.006. DOI

DeNiro MJ. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature. 1985;317:806–809. doi: 10.1038/317806a0. DOI

Ambrose SH. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archeol. Sci. 1990;17(4):431–451. doi: 10.1016/0305-4403(90)90007-R. DOI

Styring AK, Sealy JC, Evershed RP. Resolving the bulk δ15N values of ancient human and animal bone collagen via compound-specific nitrogen isotope analysis of constituent amino acids. Geochim. Cosmochim. Acta. 2010;74:241–251. doi: 10.1016/j.gca.2009.09.022. DOI

Bocherens H. Isotopic biogeochemistry and the paleoecology of the mammoth steppe fauna. Deinsea. 2003;9(57):57–76.

Schwartz-Narbonne R, Longstaffe FJ, Metcalfe JZ, Zazula G. Solving the woolly mammoth conundrum: amino acid 15N-enrichment suggests a distinct forage or habitat. Sci. Rep. 2015;5:09791. doi: 10.1038/srep09791. PubMed DOI PMC

Jędrzejewski W, Jędrzejewska B. Foraging and diet of the red fox Vulpes vulpes in relation to variable food resources in Biatowieza National Park, Poland. Ecography. 1992;15(2):212–220. doi: 10.1111/j.1600-0587.1992.tb00027.x. DOI

Elmhagen B, Tannerfeldt M, Verucci P, Angerbjörn A. The arctic fox (Alopex lagopus): an opportunistic specialist. J. Zool. 2000;251(2):139–149. doi: 10.1111/j.1469-7998.2000.tb00599.x. DOI

Wißing, C. et al. Isotopic evidence for dietary ecology of Late Neandertals in North-Western Europe. Quaternary International411, 327–345 (2016).

Amundson R, et al. Global patterns of the isotopic composition of soil and plant nitrogen. Global biogeochemical cycles. 2003;17(1):1031. doi: 10.1029/2002GB001903. DOI

Murphy BP, Bowman DM. Kangaroo metabolism does not cause the relationship between bone collagen δ15N and water availability. Functional Ecology. 2006;20(6):1062–1069. doi: 10.1111/j.1365-2435.2006.01186.x. DOI

Kohn MJ. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo) climate. Proc. Natl. Acad. Sci. USA. 2010;107(46):19691–19695. doi: 10.1073/pnas.1004933107. PubMed DOI PMC

Cordova CE, Rybak AR, Lehman PH. Vegetation patterns and conservation issues in southern Crimea. Post Sov. Geogr. Econ. 2001;42(5):362–385.

Bekenov AB, Grachev IA, Milner-Gulland EJ. The ecology and management of the saiga antelope in Kazakhstan. Mammal Rev. 1998;28(1):1–52. doi: 10.1046/j.1365-2907.1998.281024.x. DOI

Bocherens H, et al. Isotopic evidence for dietary ecology of cave lion (Panthera spelaea) in North-Western Europe: prey choice, competition and implications for extinction. Quat. Int. 2011;245(2):249–261. doi: 10.1016/j.quaint.2011.02.023. DOI

Drucker, D. G. et al. Aquatic resources in human diet in the Late Mesolithic in Northern France and Luxembourg: insights from carbon, nitrogen and sulphur isotope ratios. Archaeol. Anthropol. Sci. (2016).

Ridush B, et al. Emine-Bair-Khosar Cave in the Crimea, a huge bone accumulation of Late Pleistocene fauna. Quat. Int. 2013;284:151–160. doi: 10.1016/j.quaint.2012.03.050. DOI

Demidenko, Y. E. Crimean Upper Paleolithic in Encyclopedia of GlobalArchaeology (ed Smith, C.) 1782–1791 (Springer, 2014).

Buuveibaatar B, et al. Factors affecting survival and cause-specific mortality of saiga calves in Mongolia. J. Mamm. 2013;94(1):127–136. doi: 10.1644/11-MAMM-A-077.1. DOI

Trinkaus E, et al. An early modern human from the Peştera cu Oase, Romania. Proc. Natl. Acad. Sci. 2003;100(20):11231–11236. doi: 10.1073/pnas.2035108100. PubMed DOI PMC

Trinkaus ER, et al. Stable isotope evidence for early modern human diet in southeastern Europe: Peştera cu Oase, Peştera Muierii and Peştera Cioclovina Uscată. Materiale şi Cercetări Arheologice. 2009;5:4–14.

Longin R. New method of collagen extraction for radiocarbon dating. Nature. 1971;230:241–242. doi: 10.1038/230241a0. PubMed DOI

Bocherens H, et al. Paleobiological implications of the isotopic signature (13C, 15N) of fossil mammal collagen in Scladina cave (Sclayn, Belgium) Quatern. Res. 1997;48:370–380. doi: 10.1006/qres.1997.1927. DOI

Chikaraishi Y, Kashiyama Y, Ogawa NO, Kitazato H, Ohkouchi N. Metabolic control of nitrogen isotope composition of amino acids in macroalgae and gastropods: implications for aquatic food web studies. Mar. Ecol. Prog. Ser. 2007;342:85–90. doi: 10.3354/meps342085. DOI

Chikaraishi Y, Ogawa NO, Doi H, Ohkouchi N. 15N/14N Ratios of Amino Acids as a Tool for Studying Terrestrial Food Webs: A Case Study of Terrestrial Insects (Bees, Wasps, and Hornets) Ecol. Res. 2011;26(4):835–844. doi: 10.1007/s11284-011-0844-1. DOI

Parnell AC, Inger R, Bearhop S, Jackson AL. Source partitioning using stable isotopes: Coping with too much variation. PLoS One. 2010;5:e9672. doi: 10.1371/journal.pone.0009672. PubMed DOI PMC

R Core Team. A language and environment for statistical computing. European Environment Agencyhttp://www.R-project.org (2013).

Bocherens H, et al. Reconstruction of the Gravettian food-web at Předmostí I using multi-isotopic tracking (13C, 15N, 34S) of bone collagen. Quat. Int. 2015;359:211–228. doi: 10.1016/j.quaint.2014.09.044. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...